Applied Probability
Jump to year
Paper 1, Section II, 28K
commentThe particles of an Ideal Gas form a spatial Poisson process on with constant intensity , called the activity of the gas.
(a) Prove that the independent mixture of two Ideal Gases with activities and is again an Ideal Gas. What is its activity? [You must prove any results about Poisson processes that you use. The independent mixture of two gases with particles and is given by
(b) For an Ideal Gas of activity , find the limiting distribution of
as for a given sequence of subsets with .
(c) Let be a smooth non-negative function vanishing outside a bounded subset of . Find the mean and variance of , where the sum runs over the particles of an ideal gas of activity . [You may use the properties of spatial Poisson processes established in the lectures.]
[Hint: recall that the characteristic function of a Poisson random variable with mean is
Paper 2, Section II,
commentLet be an irreducible, non-explosive, continuous-time Markov process on the state space with generator .
(a) Define its jump chain and prove that it is a discrete-time Markov chain.
(b) Define what it means for to be recurrent and prove that is recurrent if and only if its jump chain is recurrent. Prove also that this is the case if the transition semigroup satisfies
(c) Show that is recurrent for at least one of the following generators:
[Hint: You may use that the semigroup associated with a -matrix on such that depends only on (and has sufficient decay) can be written as
where . You may also find the bound useful.
Paper 3, Section II,
comment(a) Customers arrive at a queue at the event times of a Poisson process of rate . The queue is served by two independent servers with exponential service times with parameter each. If the queue has length , an arriving customer joins with probability and leaves otherwise (where . For which and is there a stationary distribution?
(b) A supermarket allows a maximum of customers to shop at the same time. Customers arrive at the event times of a Poisson process of rate 1 , they enter the supermarket when possible, and they leave forever for another supermarket otherwise. Customers already in the supermarket pay and leave at the event times of an independent Poisson process of rate . When is there a unique stationary distribution for the number of customers in the supermarket? If it exists, find it.
(c) In the situation of part (b), started from equilibrium, show that the departure process is Poissonian.
Paper 4, Section II,
commentLet be a continuous-time Markov process with state space and generator satisfying for all . The local time up to time of is the random vector defined by
(a) Let be any function that is differentiable with respect to its second argument, and set
Show that
where
(b) For , write for the vector of squares of the components of . Let be a function such that whenever for some fixed . Using integration by parts, or otherwise, show that for all
where denotes .
(c) Let be a function with whenever for some fixed . Given , now let
in part (b) and deduce, using part (a), that
[You may exchange the order of integrals and derivatives without justification.]
Paper 1, Section II, 28K
comment(a) What is meant by a birth process with strictly positive rates Explain what is meant by saying that is non-explosive.
(b) Show that is non-explosive if and only if
(c) Suppose , and where . Show that
Paper 2, Section II, 27K
comment(i) Let be a Markov chain in continuous time on the integers with generator . Define the corresponding jump chain .
Define the terms irreducibility and recurrence for . If is irreducible, show that is recurrent if and only if is recurrent.
(ii) Suppose
Show that is transient, find an invariant distribution, and show that is explosive. [Any general results may be used without proof but should be stated clearly.]
Paper 3, Section II, 27K
commentDefine a renewal-reward process, and state the renewal-reward theorem.
A machine is repaired at time . After any repair, it functions without intervention for a time that is exponentially distributed with parameter , at which point it breaks down (assume the usual independence). Following any repair at time , say, it is inspected at times , and instantly repaired if found to be broken (the inspection schedule is then restarted). Find the long run proportion of time that is working. [You may express your answer in terms of an integral.]
Paper 4, Section II, K
comment(i) Explain the notation in the context of queueing theory. [In the following, you may use without proof the fact that is the invariant distribution of such a queue when .
(ii) In a shop queue, some customers rejoin the queue after having been served. Let and . Consider a queue subject to the modification that, on completion of service, each customer leaves the shop with probability , or rejoins the shop queue with probability . Different customers behave independently of one another, and all service times are independent random variables.
Find the distribution of the total time a given customer spends being served by the server. Hence show that equilibrium is possible if , and find the invariant distribution of the queue-length in this case.
(iii) Show that, in equilibrium, the departure process is Poissonian, whereas, assuming the rejoining customers go to the end of the queue, the process of customers arriving at the queue (including the rejoining ones) is not Poissonian.
Paper 1, Section II, K
commentLet be a countable set, and let be a Markov transition matrix with for all . Let be a discrete-time Markov chain on the state space with transition matrix .
The continuous-time process is constructed as follows. Let be independent, identically distributed random variables having the exponential distribution with mean 1. Let be a function on such that for all and some constant . Let for . Let and for . Finally, let for .
(a) Explain briefly why is a continuous-time Markov chain on , and write down its generator in terms of and the vector .
(b) What does it mean to say that the chain is irreducible? What does it mean to say a state is (i) recurrent and (ii) positive recurrent?
(c) Show that
(i) is irreducible if and only if is irreducible;
(ii) is recurrent if and only if is recurrent.
(d) Suppose is irreducible and positive recurrent with invariant distribution . Express the invariant distribution of in terms of and .
Paper 2, Section II, K
commentLet be a Markov chain on the non-negative integers with generator given by
for a given collection of positive numbers .
(a) State the transition matrix of the jump chain of .
(b) Why is not reversible?
(c) Prove that is transient if and only if .
(d) Assume that . Derive a necessary and sufficient condition on the parameters for to be explosive.
(e) Derive a necessary and sufficient condition on the parameters for the existence of an invariant measure for .
[You may use any general results from the course concerning Markov chains and pure birth processes so long as they are clearly stated.]
Paper 3, Section II, K
comment(a) What does it mean to say that a continuous-time Markov chain ) with state space is reversible in equilibrium? State the detailed balance equations, and show that any probability distribution on satisfying them is invariant for the chain.
(b) Customers arrive in a shop in the manner of a Poisson process with rate . There are servers, and capacity for up to people waiting for service. Any customer arriving when the shop is full (in that the total number of customers present is ) is not admitted and never returns. Service times are exponentially distributed with parameter , and they are independent of one another and of the arrivals process. Describe the number of customers in the shop at time as a Markov chain.
Calculate the invariant distribution of , and explain why is the unique invariant distribution. Show that is reversible in equilibrium.
[Any general result from the course may be used without proof, but must be stated clearly.]
Paper 4, Section II, K
comment(a) Let be such that is finite for any bounded measurable set . State the properties which define a (non-homogeneous) Poisson process on with intensity function .
(b) Let be a Poisson process on with intensity function , and let be a given function. Give a clear statement of the necessary conditions on the pair subject to which is a Poisson process on . When these conditions hold, express the mean measure of in terms of and .
(c) Let be a homogeneous Poisson process on with constant intensity 1 , and let be given by . Show that is a homogeneous Poisson process on with constant intensity .
Let be an increasing sequence of positive random variables such that the points of are Show that has density function
Paper 1, Section II, J
commentLet be a continuous function. Explain what is meant by an inhomogeneous Poisson process with intensity function .
Let be such an inhomogeneous Poisson process, and let where is strictly increasing, differentiable and satisfies . Show that is a homogeneous Poisson process with intensity 1 if for all , where . Deduce that has the Poisson distribution with mean .
Bicycles arrive at the start of a long road in the manner of a Poisson process with constant intensity . The th bicycle has constant velocity , where are independent, identically distributed random variables, which are independent of . Cyclists can overtake one another freely. Show that the number of bicycles on the first miles of the road at time has the Poisson distribution with parameter .
Paper 2, Section II, J
commentLet be a continuous-time Markov chain on the finite state space . Define the terms generator (or Q-matrix) and invariant distribution, and derive an equation that links the generator and any invariant distribution . Comment on the possible non-uniqueness of invariant distributions.
Suppose is irreducible, and let be a Poisson process with intensity , that is independent of . Let be the value of immediately after the th arrival-time of (and . Show that is a discrete-time Markov chain, state its transition matrix and prove that it has the same invariant distribution as .
Paper 3, Section II, J
commentIndividuals arrive in a shop in the manner of a Poisson process with intensity , and they await service in the order of their arrival. Their service times are independent, identically distributed random variables . For , let be the number remaining in the shop immediately after the th departure. Show that
where is the number of arrivals during the th service period, and .
Show that
where is a typical service period, and is the traffic intensity of the queue.
Suppose , and the queue is in equilibrium in the sense that and have the same distribution for all . Express in terms of . Deduce that the mean waiting time (prior to service) of a typical individual is .
Paper 4, Section II, J
commentLet be independent, identically distributed random variables with finite mean . Explain what is meant by saying that the random variable is a stopping time with respect to the sequence .
Let be a stopping time with finite mean . Prove Wald's equation:
[Here and in the following, you may use any standard theorem about integration.]
Suppose the are strictly positive, and let be the renewal process with interarrival times . Prove that satisfies the elementary renewal theorem:
A computer keyboard contains 100 different keys, including the lower and upper case letters, the usual symbols, and the space bar. A monkey taps the keys uniformly at random. Find the mean number of keys tapped until the first appearance of the sequence 'lava' as a sequence of 4 consecutive characters.
Find the mean number of keys tapped until the first appearance of the sequence 'aa' as a sequence of 2 consecutive characters.
Paper 1, Section II,
comment(a) Define a continuous time Markov chain with infinitesimal generator and jump chain .
(b) Let be a transient state of a continuous-time Markov chain with . Show that the time spent in state has an exponential distribution and explicitly state its parameter.
[You may use the fact that if , then for .]
(c) Let be an asymmetric random walk in continuous time on the non-negative integers with reflection at 0 , so that
Suppose that and . Show that for all , the total time spent in state is exponentially distributed with parameter .
Assume now that has some general distribution with probability generating function . Find the expected amount of time spent at 0 in terms of .
Paper 2, Section II, K
comment(a) Give the definition of a Poisson process on . Let be a Poisson process on . Show that conditional on , the jump times have joint density function
where is the indicator of the set .
(b) Let be a Poisson process on with intensity and jump times . If is a real function, we define for all
Show that for all the following is true
Paper 3, Section II, K
comment(a) Define the Moran model and Kingman's -coalescent. Define Kingman's infinite coalescent.
Show that Kingman's infinite coalescent comes down from infinity. In other words, with probability one, the number of blocks of is finite at any time .
(b) Give the definition of a renewal process.
Let denote the sequence of inter-arrival times of the renewal process . Suppose that .
Prove that as .
Prove that for some strictly positive .
[Hint: Consider the renewal process with inter-arrival times for some suitable .]
Paper 4, Section II,
comment(a) Give the definition of an queue. Prove that if is the arrival rate and the service rate and , then the length of the queue is a positive recurrent Markov chain. What is the equilibrium distribution?
If the queue is in equilibrium and a customer arrives at some time , what is the distribution of the waiting time (time spent waiting in the queue plus service time)?
(b) We now modify the above queue: on completion of service a customer leaves with probability , or goes to the back of the queue with probability . Find the distribution of the total time a customer spends being served.
Hence show that equilibrium is possible if and find the stationary distribution.
Show that, in equilibrium, the departure process is Poisson.
[You may use relevant theorems provided you state them clearly.]
Paper 1, Section II, J
comment(a) Define a continuous-time Markov chain with infinitesimal generator and jump chain .
(b) Prove that if a state is transient for , then it is transient for .
(c) Prove or provide a counterexample to the following: if is positive recurrent for , then it is positive recurrent for .
(d) Consider the continuous-time Markov chain on with non-zero transition rates given by
Determine whether is transient or recurrent. Let , where is the first jump time. Does have an invariant distribution? Justify your answer. Calculate .
(e) Let be a continuous-time random walk on with and for all with . Determine for which values of the walk is transient and for which it is recurrent. In the recurrent case, determine the range of for which it is also positive recurrent. [Here denotes the Euclidean norm of .]
Paper 2, Section II, J
comment(a) Define an queue and write without proof its stationary distribution. State Burke's theorem for an queue.
(b) Let be an queue with arrival rate and service rate started from the stationary distribution. For each , denote by the last time before that a customer departed the queue and the first time after that a customer departed the queue. If there is no arrival before time , then we set . What is the limit as of ? Explain.
(c) Consider a system of queues serving a finite number of customers in the following way: at station , customers are served immediately and the service times are independent exponentially distributed with parameter ; after service, each customer goes to station with probability . We assume here that the system is closed, i.e., for all .
Let be the state space of the Markov chain. Write down its -matrix. Also write down the -matrix corresponding to the position in the network of one customer (that is, when ). Show that there is a unique distribution such that . Show that
defines an invariant measure for the chain. Are the queue lengths independent at equilibrium?
Paper 3, Section II, J
comment(a) State the thinning and superposition properties of a Poisson process on . Prove the superposition property.
(b) A bi-infinite Poisson process with is a process with independent and stationary increments over . Moreover, for all , the increment has the Poisson distribution with parameter . Prove that such a process exists.
(c) Let be a bi-infinite Poisson process on of intensity . We identify it with the set of points of discontinuity of , i.e., . Show that if we shift all the points of by the same constant , then the resulting process is also a Poisson process of intensity .
Now suppose we shift every point of by or with equal probability. Show that the final collection of points is still a Poisson process of intensity . [You may assume the thinning and superposition properties for the bi-infinite Poisson process.]
Paper 4, Section II, J
comment(a) Give the definition of a renewal process. Let be a renewal process associated with with . Show that almost surely
(b) Give the definition of Kingman's -coalescent. Let be the first time that all blocks have coalesced. Find an expression for . Let be the total length of the branches of the tree, i.e., if is the first time there are lineages, then . Show that as . Show also that for all , where is a positive constant, and that in probability
Paper 1, Section II, K
comment(a) Give the definition of a birth and death chain in terms of its generator. Show that a measure is invariant for a birth and death chain if and only if it solves the detailed balance equations.
(b) There are servers in a post office and a single queue. Customers arrive as a Poisson process of rate and the service times at each server are independent and exponentially distributed with parameter . Let denote the number of customers in the post office at time . Find conditions on and for to be positive recurrent, null recurrent and transient, justifying your answers.
Paper 2, Section II,
comment(i) Defne a Poisson process on with rate . Let and be two independent Poisson processes on of rates and respectively. Prove that is also a Poisson process and find its rate.
(ii) Let be a discrete time Markov chain with transition matrix on the finite state space . Find the generator of the continuous time Markov chain in terms of and . Show that if is an invariant distribution for , then it is also invariant for .
Suppose that has an absorbing state . If and are the absorption times for and respectively, write an equation that relates and , where .
[Hint: You may want to prove that if are i.i.d. non-negative random variables with and is an independent non-negative random variable, then
Paper 3, Section II, K
comment(i) Let be a Poisson process of parameter . Let be obtained by taking each point of and, independently of the other points, keeping it with probability . Show that is another Poisson process and find its intensity. Show that for every fixed the random variables and are independent.
(ii) Suppose we have bins, and balls arrive according to a Poisson process of rate 1 . Upon arrival we choose a bin uniformly at random and place the ball in it. We let be the maximum number of balls in any bin at time . Show that
[You may use the fact that if is a Poisson random variable of mean 1 , then
Paper 4, Section II, K
comment(i) Let be a Markov chain on and . Let be the hitting time of and denote the total time spent at by the chain before hitting . Show that if , then
(ii) Define the Moran model and show that if is the number of individuals carrying allele at time and is the fixation time of allele , then
Show that conditionally on fixation of an allele being present initially in individuals,
Paper 1, Section II, J
comment(i) Explain what a -matrix is. Let be a -matrix. Define the notion of a Markov chain in continuous time with -matrix given by , and give a construction of . [You are not required to justify this construction.]
(ii) A population consists of individuals at time . We assume that each individual gives birth to a new individual at constant rate . As the population is competing for resources, we assume that for each , if , then any individual in the population at time dies in the time interval with probability , where is a given sequence satisfying for . Formulate a Markov chain model for and write down the -matrix explicitly. Then find a necessary and sufficient condition on so that the Markov chain has an invariant distribution. Compute the invariant distribution in the case where and .
Paper 2, Section II, J
comment(i) Explain what the Moran model and the infinite alleles model are. State Ewens' sampling formula for the distribution of the allelic frequency spectrum in terms of where with denoting the mutation rate per individual and the population size.
Let be the number of allelic types in a sample of size . Give, without justification, an expression for in terms of .
(ii) Let and be as above. Show that for we have that
for some constant that does not depend on .
Show that, given , the distribution of the allelic frequency spectrum does not depend on .
Show that the value of which maximises is the one for which .
Paper 3, Section II, J
comment(i) Define a Poisson process with intensity . Specify without justification the distribution of . Let denote the jump times of . Derive the joint distribution of given .
(ii) Let be a Poisson process with intensity and let be a sequence of i.i.d. random variables, independent of , all having the same distribution as a random variable . Show that if is a real-valued function of real variables , and are the jump times of then
for all . [Hint: Condition on and , using (i).]
(iii) A university library is open from 9 am to . Students arrive at times of a Poisson process with intensity . Each student spends a random amount of time in the library, independently of the other students. These times are identically distributed for all students and have the same distribution as a random variable . Show that the number of students in the library at is a Poisson random variable with a mean that you should specify.
Paper 4, Section II, J
comment(i) Define the queue with arrival rate and service rate . Find conditions on the parameters and for the queue to be transient, null recurrent, and positive recurrent, briefly justifying your answers. In the last case give with justification the invariant distribution explicitly. Answer the same questions for an queue.
(ii) At a taxi station, customers arrive at a rate of 3 per minute, and taxis at a rate of 2 per minute. Suppose that a taxi will wait no matter how many other taxis are present. However, if a person arriving does not find a taxi waiting he or she leaves to find alternative transportation.
Find the long-run proportion of arriving customers who get taxis, and find the average number of taxis waiting in the long run.
An agent helps to assign customers to taxis, and so long as there are taxis waiting he is unable to have his coffee. Once a taxi arrives, how long will it take on average before he can have another sip of his coffee?
Paper 1, Section II, J
commentLet be a Markov chain on with -matrix given by
where .
(i) Show that is transient if and only if . [You may assume without proof that for all and all sufficiently small positive .]
(ii) Assume that . Find a necessary and sufficient condition for to be almost surely explosive. [You may assume without proof standard results about pure birth processes, provided that they are stated clearly.]
(iii) Find a stationary measure for . For the case and , show that is positive recurrent if and only if .
Paper 2, Section II, J
comment(i) Define a Poisson process as a Markov chain on the non-negative integers and state three other characterisations.
(ii) Let be a continuous positive function. Let be a right-continuous process with independent increments, such that
where the terms are uniform in . Show that is a Poisson random variable with parameter .
(iii) Let be a sequence of independent and identically distributed positive random variables with continuous density function . We define the sequence of successive records, , by and, for ,
The record process,, is then defined by
Explain why the increments of are independent. Show that is a Poisson random variable with parameter where .
[You may assume the following without proof: For fixed , let (respectively, ) be the subsequence of obtained by retaining only those elements that are greater than (respectively, smaller than) . Then (respectively, ) is a sequence of independent variables each having the distribution of conditioned on (respectively, ); and and are independent.]
Paper 3, Section II, J
commentDefine the Moran model. Describe briefly the infinite sites model of mutations.
We henceforth consider a population with individuals evolving according to the rules of the Moran model. In addition we assume:
the allelic type of any individual at any time lies in a given countable state space ;
individuals are subject to mutations at constant rate , independently of the population dynamics;
each time a mutation occurs, if the allelic type of the individual was , it changes to with probability , where is a given Markovian transition matrix on that is symmetric:
(i) Show that, if two individuals are sampled at random from the population at some time , then the time to their most recent common ancestor has an exponential distribution, with a parameter that you should specify.
(ii) Let be the total number of mutations that accumulate on the two branches separating these individuals from their most recent common ancestor. Show that is a geometric random variable, and specify its probability parameter .
(iii) The first individual is observed to be of type . Explain why the probability that the second individual is also of type is
where is a Markov chain on with transition matrix and is independent of .
Paper 4, Section II, J
comment(i) Define an queue. Justifying briefly your answer, specify when this queue has a stationary distribution, and identify that distribution. State and prove Burke's theorem for this queue.
(ii) Let denote a Jackson network of queues, where the entrance and service rates for queue are respectively and , and each customer leaving queue moves to queue with probability after service. We assume for each ; with probability a customer leaving queue departs from the system. State Jackson's theorem for this network. [You are not required to prove it.] Are the processes independent at equilibrium? Justify your answer.
(iii) Let be the process of final departures from queue . Show that, at equilibrium, is independent of . Show that, for each fixed is a Poisson process, and specify its rate.
Paper 1, Section II,
comment(a) Give the definition of a Poisson process with rate , using its transition rates. Show that for each , the distribution of is Poisson with a parameter to be specified.
Let and let denote the jump times of . What is the distribution of (You do not need to justify your answer.)
(b) Let . Compute the joint probability density function of given . Deduce that, given has the same distribution as the nondecreasing rearrangement of independent uniform random variables on .
(c) Starting from time 0, passengers arrive on platform at King's Cross station, with constant rate , in order to catch a train due to depart at time . Using the above results, or otherwise, find the expected total time waited by all passengers (the sum of all passengers' waiting times).
Paper 2, Section II, K
comment(a) A colony of bacteria evolves as follows. Let be a random variable with values in the positive integers. Each bacterium splits into copies of itself after an exponentially distributed time of parameter . Each of the daughters then splits in the same way but independently of everything else. This process keeps going forever. Let denote the number of bacteria at time . Specify the -matrix of the Markov chain . [It will be helpful to introduce , and you may assume for simplicity that
(b) Using the Kolmogorov forward equation, or otherwise, show that if , then for some to be explicitly determined in terms of . Assuming that , deduce the value of for all , and show that does not explode. [You may differentiate series term by term and exchange the order of summation without justification.]
(c) We now assume that with probability 1 . Fix and let . Show that satisfies
By making the change of variables , show that . Deduce that for all where .
Paper 3, Section II, K
commentWe consider a system of two queues in tandem, as follows. Customers arrive in the first queue at rate . Each arriving customer is immediately served by one of infinitely many servers at rate . Immediately after service, customers join a single-server second queue which operates on a first-come, first-served basis, and has a service rate . After service in this second queue, each customer returns to the first queue with probability , and otherwise leaves the system forever. A schematic representation is given below:
(a) Let and denote the number of customers at time in queues number 1 and 2 respectively, including those currently in service at time . Give the transition rates of the Markov chain .
(b) Write down an equation satisfied by any invariant measure for this Markov chain. Let and . Define a measure by
Show that it is possible to find so that is an invariant measure of , if and only if . Give the values of and in this case.
(c) Assume now that . Show that the number of customers is not positive recurrent.
[Hint. One way to solve the problem is as follows. Assume it is positive recurrent. Observe that is greater than a queue with arrival rate . Deduce that is greater than a queue with arrival rate and service rate . You may use without proof the fact that the departure process from the first queue is then, at equilibrium, a Poisson process with rate , and you may use without proof properties of thinned Poisson processes.]
Paper 4, Section II,
(a) Define the Moran model and Kingman's -coalescent. State and prove a theorem which describes the relationship between them. [You may use without proof a construction of the Moran model for all .]
(b) Let . Suppose that a population of individuals evolves according to the rules of the Moran model. Assume also that each individual in the population undergoes a mutation at constant rate . Each time a mutation occurs, we assume that the allelic type of the corresponding individual changes to an entirely new type, never seen before in the population. Let be the homozygosity probability, i.e., the probability that two individuals sampled without replacement from the population have the same genetic type. Give an expression for .
(c) Let denote the probability that a sample of size consists of one allelic type (monomorphic population). Show that , where denotes the sum of all the branch lengths in the genealogical tree of the sample - that is, , where