Part II, 2021
Jump to course
Paper 1, Section II, I
commentLet be an algebraically closed field and let be a non-empty affine variety. Show that is a finite union of irreducible subvarieties.
Let and be subvarieties of given by the vanishing loci of ideals and respectively. Prove the following assertions.
(i) The variety is equal to the vanishing locus of the ideal .
(ii) The variety is equal to the vanishing locus of the ideal .
Decompose the vanishing locus
into irreducible components.
Let be the union of the three coordinate axes. Let be the union of three distinct lines through the point in . Prove that is not isomorphic to .
Paper 2, Section II, I
commentLet be an algebraically closed field and . Exhibit as an open subset of affine space . Deduce that is smooth. Prove that it is also irreducible.
Prove that is isomorphic to a closed subvariety in an affine space.
Show that the matrix multiplication map
that sends a pair of matrices to their product is a morphism.
Prove that any morphism from to is constant.
Prove that for any morphism from to is constant.
Paper 3, Section II, I
commentIn this question, all varieties are over an algebraically closed field of characteristic zero.
What does it mean for a projective variety to be smooth? Give an example of a smooth affine variety whose projective closure is not smooth.
What is the genus of a smooth projective curve? Let be the hypersurface . Prove that contains a smooth curve of genus
Let be an irreducible curve of degree 2 . Prove that is isomorphic to .
We define a generalized conic in to be the vanishing locus of a non-zero homogeneous quadratic polynomial in 3 variables. Show that there is a bijection between the set of generalized conics in and the projective space , which maps the conic to the point whose coordinates are the coefficients of .
(i) Let be the subset of conics that consist of unions of two distinct lines. Prove that is not Zariski closed, and calculate its dimension.
(ii) Let be the homogeneous ideal of polynomials vanishing on . Determine generators for the ideal .
Paper 4, Section II, I
commentLet be a smooth irreducible projective algebraic curve over an algebraically closed field.
Let be an effective divisor on . Prove that the vector space of rational functions with poles bounded by is finite dimensional.
Let and be linearly equivalent divisors on . Exhibit an isomorphism between the vector spaces and .
What is a canonical divisor on ? State the Riemann-Roch theorem and use it to calculate the degree of a canonical divisor in terms of the genus of .
Prove that the canonical divisor on a smooth cubic plane curve is linearly equivalent to the zero divisor.
Paper 1, Section II, 21F
comment(a) What does it mean for two spaces and to be homotopy equivalent?
(b) What does it mean for a subspace to be a retract of a space ? What does it mean for a space to be contractible? Show that a retract of a contractible space is contractible.
(c) Let be a space and a subspace. We say the pair has the homotopy extension property if, for any pair of maps and with
there exists a map with
Now suppose that is contractible. Denote by the quotient of by the equivalence relation if and only if or . Show that, if satisfies the homotopy extension property, then and are homotopy equivalent.
Paper 2, Section II, 21F
comment(a) State a suitable version of the Seifert-van Kampen theorem and use it to calculate the fundamental groups of the torus and of the real projective plane .
(b) Show that there are no covering maps or .
(c) Consider the following covering space of :
Here the line segments labelled and are mapped to the two different copies of contained in , with orientations as indicated.
Using the Galois correspondence with basepoints, identify a subgroup of
(where is the wedge point) that corresponds to this covering space.
Paper 3, Section II, 20F
commentLet be a space. We define the cone of to be
where if and only if either or .
(a) Show that if is triangulable, so is . Calculate . [You may use any results proved in the course.]
(b) Let be a simplicial complex and a subcomplex. Let , and let be the space obtained by identifying with . Show that there is a long exact sequence
(c) In part (b), suppose that and for some . Calculate for all .
Paper 4, Section II, 21F
comment(a) Define the Euler characteristic of a triangulable space .
(b) Let be an orientable surface of genus . A is a doublebranched cover if there is a set of branch points, such that the restriction is a covering map of degree 2 , but for each , consists of one point. By carefully choosing a triangulation of , use the Euler characteristic to find a formula relating and .
Paper 1, Section II,
commentBelow, is the -algebra of Lebesgue measurable sets and is Lebesgue measure.
(a) State the Lebesgue differentiation theorem for an integrable function . Let be integrable and define by for some . Show that is differentiable -almost everywhere.
(b) Suppose is strictly increasing, continuous, and maps sets of -measure zero to sets of -measure zero. Show that we can define a measure on by setting for , and establish that . Deduce that is differentiable -almost everywhere. Does the result continue to hold if is assumed to be non-decreasing rather than strictly increasing?
[You may assume without proof that a strictly increasing, continuous, function is injective, and is continuous.]
Paper 2, Section II, H
commentDefine the Schwartz space, , and the space of tempered distributions, , stating what it means for a sequence to converge in each space.
For a function , and non-negative integers , we say if
You may assume that equipped with is a Banach space in which is dense.
(a) Show that if there exist and such that
Deduce that there exists a unique such that for all .
(b) Recall that is positive if for all satisfying . Show that if is positive, then there exist and such that
Hint: Note that
Paper 3, Section II, H
comment(a) State the Riemann-Lebesgue lemma. Show that the Fourier transform maps to itself continuously.
(b) For some , let . Consider the following system of equations for
Show that there exists a unique solving the equations with for . You need not find explicitly, but should give an expression for the Fourier transform of . Show that there exists a constant such that
For what values of can we conclude that ?
Paper 4, Section II,
commentFix and let satisfy
(a) Let be a sequence of functions in . For , what is meant by (i) in and (ii) in ? Show that if , then
(b) Suppose that is a sequence with , and that there exists such that for all . Show that there exists and a subsequence , such that for any sequence with and , we have
Give an example to show that the result need not hold if the condition is replaced by in .
Paper 1, Section II, B
comment(a) Discuss the variational principle that allows one to derive an upper bound on the energy of the ground state for a particle in one dimension subject to a potential .
If , how could you adapt the variational principle to derive an upper bound on the energy of the first excited state?
(b) Consider a particle of mass (in certain units) subject to a potential
(i) Using the trial wavefunction
with , derive the upper bound , where
(ii) Find the zero of in and show that any extremum must obey
(iii) By sketching or otherwise, deduce that there must always be a minimum in . Hence deduce the existence of a bound state.
(iv) Working perturbatively in , show that
[Hint: You may use that for
Paper 2, Section II, 36B
comment(a) The -wave solution for the scattering problem of a particle of mass and momentum has the asymptotic form
Define the phase shift and verify that .
(b) Define the scattering amplitude . For a spherically symmetric potential of finite range, starting from , derive the expression
giving the cross-section in terms of the phase shifts of the partial waves.
(c) For with , show that a bound state exists and compute its energy. Neglecting the contributions from partial waves with , show that
(d) For with compute the -wave contribution to . Working to leading order in , show that has a local maximum at . Interpret this fact in terms of a resonance and compute its energy and decay width.
Paper 3, Section II, 34B
comment(a) In three dimensions, define a Bravais lattice and its reciprocal lattice .
A particle is subject to a potential with for and . State and prove Bloch's theorem and specify how the Brillouin zone is related to the reciprocal lattice.
(b) A body-centred cubic lattice consists of the union of the points of a cubic lattice and all the points at the centre of each cube:
where and are unit vectors parallel to the Cartesian coordinates in . Show that is a Bravais lattice and determine the primitive vectors and .
Find the reciprocal lattice Briefly explain what sort of lattice it is.
Hint: The matrix has inverse .
Paper 4, Section II, B
comment(a) Consider the nearly free electron model in one dimension with mass and periodic potential with and
Ignoring degeneracies, the energy spectrum of Bloch states with wavenumber is
where are normalized eigenstates of the free Hamiltonian with wavenumber . What is in this formula?
If we impose periodic boundary conditions on the wavefunctions, with and a positive integer, what are the allowed values of and ? Determine for these allowed values.
(b) State when the above expression for ceases to be a good approximation and explain why. Quoting any result you need from degenerate perturbation theory, calculate to the location and width of the band gaps.
(c) Determine the allowed energy bands for each of the potentials
(d) Briefly discuss a macroscopic physical consequence of the existence of energy bands.
Paper 1, Section II, 28K
commentThe particles of an Ideal Gas form a spatial Poisson process on with constant intensity , called the activity of the gas.
(a) Prove that the independent mixture of two Ideal Gases with activities and is again an Ideal Gas. What is its activity? [You must prove any results about Poisson processes that you use. The independent mixture of two gases with particles and is given by
(b) For an Ideal Gas of activity , find the limiting distribution of
as for a given sequence of subsets with .
(c) Let be a smooth non-negative function vanishing outside a bounded subset of . Find the mean and variance of , where the sum runs over the particles of an ideal gas of activity . [You may use the properties of spatial Poisson processes established in the lectures.]
[Hint: recall that the characteristic function of a Poisson random variable with mean is
Paper 2, Section II,
commentLet be an irreducible, non-explosive, continuous-time Markov process on the state space with generator .
(a) Define its jump chain and prove that it is a discrete-time Markov chain.
(b) Define what it means for to be recurrent and prove that is recurrent if and only if its jump chain is recurrent. Prove also that this is the case if the transition semigroup satisfies
(c) Show that is recurrent for at least one of the following generators:
[Hint: You may use that the semigroup associated with a -matrix on such that depends only on (and has sufficient decay) can be written as
where . You may also find the bound useful.
Paper 3, Section II,
comment(a) Customers arrive at a queue at the event times of a Poisson process of rate . The queue is served by two independent servers with exponential service times with parameter each. If the queue has length , an arriving customer joins with probability and leaves otherwise (where . For which and is there a stationary distribution?
(b) A supermarket allows a maximum of customers to shop at the same time. Customers arrive at the event times of a Poisson process of rate 1 , they enter the supermarket when possible, and they leave forever for another supermarket otherwise. Customers already in the supermarket pay and leave at the event times of an independent Poisson process of rate . When is there a unique stationary distribution for the number of customers in the supermarket? If it exists, find it.
(c) In the situation of part (b), started from equilibrium, show that the departure process is Poissonian.
Paper 4, Section II,
commentLet be a continuous-time Markov process with state space and generator satisfying for all . The local time up to time of is the random vector defined by
(a) Let be any function that is differentiable with respect to its second argument, and set
Show that
where
(b) For , write for the vector of squares of the components of . Let be a function such that whenever for some fixed . Using integration by parts, or otherwise, show that for all
where denotes .
(c) Let be a function with whenever for some fixed . Given , now let
in part (b) and deduce, using part (a), that
[You may exchange the order of integrals and derivatives without justification.]
Paper 2, Section II, 32A
comment(a) Let and , for , be real-valued functions on .
(i) Define what it means for the sequence to be an asymptotic sequence as .
(ii) Define what it means for to have the asymptotic expansion
(b) Use the method of stationary phase to calculate the leading-order asymptotic approximation as of
[You may assume that .]
(c) Use Laplace's method to calculate the leading-order asymptotic approximation as of
[In parts (b) and (c) you should include brief qualitative reasons for the origin of the leading-order contributions, but you do not need to give a formal justification.]
Paper 3, Section II, 30A
comment(a) Carefully state Watson's lemma.
(b) Use the method of steepest descent and Watson's lemma to obtain an infinite asymptotic expansion of the function
Paper 4, Section II, A
comment(a) Classify the nature of the point at for the ordinary differential equation
(b) Find a transformation from to an equation of the form
and determine .
(c) Given satisfies ( , use the Liouville-Green method to find the first three terms in an asymptotic approximation as for , verifying the consistency of any approximations made.
(d) Hence obtain corresponding asymptotic approximations as of two linearly independent solutions of .
Paper 1, Section I, F
commentLet be the partial function on variables that is computed by the th machine (or the empty function if does not encode a machine).
Define the halting set .
Given , what is a many-one reduction of to ?
State the theorem and use it to show that a subset of is recursively enumerable if and only if .
Give an example of a set with but .
[You may assume that is recursively enumerable and that .]
Paper 1, Section II, F
commentFor give the definition of a partial recursive function in terms of basic functions, composition, recursion and minimisation.
Show that the following partial functions from to are partial recursive: (i) (ii) (iii)
Which of these can be defined without using minimisation?
What is the class of functions that can be defined using only basic functions and composition? [Hint: See which functions you can obtain and then show that these form a class that is closed with respect to the above.]
Show directly that every function in this class is computable.
Paper 2, Section I, F
commentAssuming the definition of a deterministic finite-state automaton (DFA) , what is the extended transition function for ? Also assuming the definition of a nondeterministic finite-state automaton (NFA) , what is in this case?
Define the languages accepted by and , respectively, in terms of .
Given an NFA as above, describe the subset construction and show that the resulting DFA accepts the same language as . If has one accept state then how many does have?
Paper 3, Section I, F
commentDefine a regular expression and explain how this gives rise to a language .
Define a deterministic finite-state automaton and the language that it accepts.
State the relationship between languages obtained from regular expressions and languages accepted by deterministic finite-state automata.
Let and be regular languages. Is always regular? What about ?
Now suppose that are regular languages. Is the countable union always regular? What about the countable intersection ?
Paper 3, Section II,
commentSuppose that is a context-free grammar without -productions. Given a derivation of some word in the language of , describe a parse tree for this derivation.
State and prove the pumping lemma for . How would your proof differ if you did not assume that was in Chomsky normal form, but merely that has no - or unit productions?
For the alphabet of terminal symbols, state whether the following languages over are context free, giving reasons for your answer. (i) , (ii) , (iii) .
Paper 4, Section I,
commentState the pumping lemma for regular languages.
Which of the following languages over the alphabet are regular?
(i) .
(ii) where is the reverse of the word .
(iii) does not contain the subwords 01 or 10.
Paper 1, Section I, D
commentTwo equal masses move along a straight line between two stationary walls. The mass on the left is connected to the wall on its left by a spring of spring constant , and the mass on the right is connected to the wall on its right by a spring of spring constant . The two masses are connected by a third spring of spring constant .
(a) Show that the Lagrangian of the system can be written in the form
where , for , are the displacements of the two masses from their equilibrium positions, and and are symmetric matrices that should be determined.
(b) Let
where and . Using Lagrange's equations of motion, show that the angular frequencies of the normal modes of the system are given by
where
Paper 2, Section I, D
commentShow that, in a uniform gravitational field, the net gravitational torque on a system of particles, about its centre of mass, is zero.
Let be an inertial frame of reference, and let be the frame of reference with the same origin and rotating with angular velocity with respect to . You may assume that the rates of change of a vector observed in the two frames are related by
Derive Euler's equations for the torque-free motion of a rigid body.
Show that the general torque-free motion of a symmetric top involves precession of the angular-velocity vector about the symmetry axis of the body. Determine how the direction and rate of precession depend on the moments of inertia of the body and its angular velocity.
Paper 2, Section II, D
comment(a) Show that the Hamiltonian
where is a positive constant, describes a simple harmonic oscillator with angular frequency . Show that the energy and the action of the oscillator are related by .
(b) Let be a constant. Verify that the differential equation
is solved by
when , where is a constant you should determine in terms of .
(c) Show that the solution in part (b) obeys
Hence show that the fractional variation of the action in the limit is , but that these variations do not accumulate. Comment on this behaviour in relation to the theory of adiabatic invariance.
Paper 3 , Section I, D
commentThe Lagrangian of a particle of mass and charge in an electromagnetic field takes the form
Explain the meaning of and , and how they are related to the electric and magnetic fields.
Obtain the canonical momentum and the Hamiltonian .
Suppose that the electric and magnetic fields have Cartesian components and , respectively, where and are positive constants. Explain why the Hamiltonian of the particle can be taken to be
State three independent integrals of motion in this case.
Paper 4, Section I, D
commentBriefly describe a physical object (a Lagrange top) whose Lagrangian is
Explain the meaning of the symbols in this equation.
Write down three independent integrals of motion for this system, and show that the nutation of the top is governed by the equation
where and is a certain cubic function that you need not determine.
Paper 4, Section II, 15D
comment(a) Let be a set of canonical phase-space variables for a Hamiltonian system with degrees of freedom. Define the Poisson bracket of two functions and . Write down the canonical commutation relations that imply that a second set of phase-space variables is also canonical.
(b) Consider the near-identity transformation
where and are small. Determine the approximate forms of the canonical commutation relations, accurate to first order in and . Show that these are satisfied when
where is a small parameter and is some function of the phase-space variables.
(c) In the limit this near-identity transformation is called the infinitesimal canonical transformation generated by . Let be an autonomous Hamiltonian. Show that the change in the Hamiltonian induced by the infinitesimal canonical transformation is
Explain why is an integral of motion if and only if the Hamiltonian is invariant under the infinitesimal canonical transformation generated by .
(d) The Hamiltonian of the gravitational -body problem in three-dimensional space is
where and are the mass, position and momentum of body . Determine the form of and the infinitesimal canonical transformation that correspond to the translational symmetry of the system.
Paper 1, Section I,
commentLet be an code. Define the parameters and . In each of the following cases define the new code and give its parameters.
(i) is the parity extension of .
(ii) is the punctured code (assume ).
(iii) is the shortened code (assume ).
Let . Suppose the parity extension of is transmitted through a binary symmetric channel where is the probability of a single-bit error in the channel. Calculate the probability that an error in the transmission of a single codeword is not noticed.
Paper 1, Section II,
commentLet be a finite alphabet and a random variable that takes each value with probability . Define the entropy of .
Suppose and is a decipherable code. Write down an expression for the expected word length of .
Prove that the minimum expected word length of a decipherable code satisfies
[You can use Kraft's and Gibbs' inequalities as long as they are clearly stated.]
Suppose a decipherable binary code has word lengths . Show that
Suppose is a source that emits sourcewords and is the probability that is emitted, where . Let and for . Let for . Now define a code by where is the (fractional part of the) binary expansion of to decimal places. Prove that this defines a decipherable code.
What does it mean for a code to be optimal? Is the code defined in the previous paragraph in terms of the necessarily optimal? Justify your answer.
Paper 2, Section I, K
State Shannon's noisy coding theorem for a binary symmetric channel, defining the terms involved.
Suppose a channel matrix, with output alphabet of size , is such that the entries in each row are the elements of the set in some order. Further suppose that all columns are permutations of one another. Show that the channel's information capacity is given by
Show that the information capacity of the channel matrix