Part IB, 2018, Paper 2
Part IB, 2018, Paper 2
Jump to course
Paper 2, Section I, F
commentShow that defines a norm on the space of continuous functions .
Let be the set of continuous functions with . Show that for each continuous function , there is a sequence with such that as
Show that if is continuous and for every then .
Paper 2, Section II, F
comment(a) Let be a metric space, a non-empty subset of and . Define what it means for to be Lipschitz. If is Lipschitz with Lipschitz constant and if
for each , show that for each and that is Lipschitz with Lipschitz constant . (Be sure to justify that , i.e. that the infimum is finite for every .)
(b) What does it mean to say that two norms on a vector space are Lipschitz equivalent?
Let be an -dimensional real vector space equipped with a norm . Let be a basis for . Show that the map defined by is continuous. Deduce that any two norms on are Lipschitz equivalent.
(c) Prove that for each positive integer and each , there is a constant with the following property: for every polynomial of degree , there is a point such that
where is the derivative of .
Paper 2, Section II, A
comment(a) Let be a complex function. Define the Laurent series of about , and give suitable formulae in terms of integrals for calculating the coefficients of the series.
(b) Calculate, by any means, the first 3 terms in the Laurent series about for
Indicate the range of values of for which your series is valid.
(c) Let
Classify the singularities of for .
(d) By considering
where for some suitably chosen , show that
Paper 2, Section I,
commentDerive the Biot-Savart law
from Maxwell's equations, where the time-independent current vanishes outside . [You may assume that the vector potential can be chosen to be divergence-free.]
Paper 2, Section II, C
commentA plane with unit normal supports a charge density and a current density that are each time-independent. Show that the tangential components of the electric field and the normal component of the magnetic field are continuous across the plane.
Albert moves with constant velocity relative to the plane. Find the boundary conditions at the plane on the normal component of the magnetic field and the tangential components of the electric field as seen in Albert's frame.
Paper 2, Section I, D
commentThe Euler equations for steady fluid flow in a rapidly rotating system can be written
where is the density of the fluid, is its pressure, is the acceleration due to gravity and is the constant Coriolis parameter in a Cartesian frame of reference , with pointing vertically upwards.
Fluid occupies a layer of slowly-varying height . Given that the pressure is constant at and that the flow is approximately horizontal with components , show that the contours of are streamlines of the horizontal flow. What is the leading-order horizontal volume flux of fluid between two locations at which and , where ?
Identify the dimensions of all the quantities involved in your expression for the volume flux and show that your expression is dimensionally consistent.
Paper 2, Section II, G
commentFor any matrix
the corresponding Möbius transformation is
which acts on the upper half-plane , equipped with the hyperbolic metric .
(a) Assuming that , prove that is conjugate in to a diagonal matrix . Determine the relationship between and .
(b) For a diagonal matrix with , prove that
for all not on the imaginary axis.
(c) Assume now that . Prove that fixes a point in .
(d) Give an example of a matrix in that does not preserve any point or hyperbolic line in . Justify your answer.
Paper 2, Section ,
commentLet be a principal ideal domain and a non-zero element of . We define a new as follows. We define an equivalence relation on by
if and only if . The underlying set of is the set of -equivalence classes. We define addition on by
and multiplication by .
(a) Show that is a well defined ring.
(b) Prove that is a principal ideal domain.
Paper 2, Section II, G
comment(a) Prove that every principal ideal domain is a unique factorization domain.
(b) Consider the ring .
(i) What are the units in ?
(ii) Let be irreducible. Prove that either , for a prime, or and .
(iii) Prove that is not expressible as a product of irreducibles.
Paper 2, Section I, E
commentLet be a real vector space. Define the dual vector space of . If is a subspace of , define the annihilator of . If is a basis for , define its dual and prove that it is a basis for .
If has basis and is the subspace spanned by
give a basis for in terms of the dual basis .
Paper 2, Section II, E
commentIf is an matrix over a field, show that there are invertible matrices and such that
for some , where is the identity matrix of dimension .
For a square matrix of the form with and square matrices, prove that .
If and have no common eigenvalue, show that the linear map
is injective.
Paper 2, Section II, H
commentFor a finite irreducible Markov chain, what is the relationship between the invariant probability distribution and the mean recurrence times of states?
A particle moves on the vertices of the hypercube, , in the following way: at each step the particle is equally likely to move to each of the adjacent vertices, independently of its past motion. (Two vertices are adjacent if the Euclidean distance between them is one.) The initial vertex occupied by the particle is . Calculate the expected number of steps until the particle
(i) first returns to ,
(ii) first visits ,
(iii) first visits .
Paper 2, Section I,
commentShow that
along a characteristic curve of the -order pde
Paper 2, Section II, A
comment(a) Let be a -periodic function (i.e. for all ) defined on by
Find the Fourier series of in the form
(b) Find the general solution to
where is as given in part (a) and is -periodic.
Paper 2, Section I, E
commentWhat does it mean to say that is a metric on a set ? What does it mean to say that a subset of is open with respect to the metric ? Show that the collection of subsets of that are open with respect to satisfies the axioms of a topology.
For , the set of continuous functions , show that the metrics
give different topologies.
Paper 2, Section II, D
commentShow that the recurrence relation
where is an inner product on real polynomials, produces a sequence of orthogonal, monic, real polynomials of degree exactly of the real variable , provided that is a monic, real polynomial of degree exactly .
Show that the choice leads to a three-term recurrence relation of the form
where and are constants that should be determined in terms of the inner products and .
Use this recurrence relation to find the first four monic Legendre polynomials, which correspond to the inner product defined by
Paper 2, Section , H
commentWhat does it mean to state that is a convex function?
Suppose that are convex functions, and for let
Assuming is finite for all , prove that the function is convex.
Paper 2, Section II, B
commentFor an electron in a hydrogen atom, the stationary-state wavefunctions are of the form , where in suitable units obeys the radial equation
Explain briefly how the terms in this equation arise.
This radial equation has bound-state solutions of energy , where . Show that when , there is a solution of the form , and determine . Find the expectation value in this state.
Determine the total degeneracy of the energy level with energy .
Paper 2, Section I,
commentDefine a simple hypothesis. Define the terms size and power for a test of one simple hypothesis against another. State the Neyman-Pearson lemma.
There is a single observation of a random variable which has a probability density function . Construct a best test of size for the null hypothesis
against the alternative hypothesis
Calculate the power of your test.
Paper 2, Section II, B
commentDerive the Euler-Lagrange equation for the integral
when and take given values at the fixed endpoints.
Show that the only function with and as for which the integral
is stationary is .