Paper 2, Section II, G

Geometry | Part IB, 2018

For any matrix

A=(abcd)SL(2,R)A=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \in S L(2, \mathbb{R})

the corresponding Möbius transformation is

zAz=az+bcz+d,z \mapsto A z=\frac{a z+b}{c z+d},

which acts on the upper half-plane H\mathbb{H}, equipped with the hyperbolic metric ρ\rho.

(a) Assuming that trA>2|\operatorname{tr} A|>2, prove that AA is conjugate in SL(2,R)S L(2, \mathbb{R}) to a diagonal matrix BB. Determine the relationship between trA|\operatorname{tr} A| and ρ(i,Bi)\rho(i, B i).

(b) For a diagonal matrix BB with trB>2|\operatorname{tr} B|>2, prove that

ρ(x,Bx)>ρ(i,Bi)\rho(x, B x)>\rho(i, B i)

for all xHx \in \mathbb{H} not on the imaginary axis.

(c) Assume now that trA<2|\operatorname{tr} A|<2. Prove that AA fixes a point in H\mathbb{H}.

(d) Give an example of a matrix AA in SL(2,R)S L(2, \mathbb{R}) that does not preserve any point or hyperbolic line in H\mathbb{H}. Justify your answer.

Typos? Please submit corrections to this page on GitHub.