Paper 2, Section II, G
(a) Prove that every principal ideal domain is a unique factorization domain.
(b) Consider the ring .
(i) What are the units in ?
(ii) Let be irreducible. Prove that either , for a prime, or and .
(iii) Prove that is not expressible as a product of irreducibles.
Typos? Please submit corrections to this page on GitHub.