Part IB, 2012, Paper 4
Part IB, 2012, Paper 4
Jump to course
Paper 4, Section I, E
commentLet be a bilinear function. Show that is differentiable at any point in and find its derivative.
Paper 4, Section II, E
commentState and prove the Bolzano-Weierstrass theorem in . [You may assume the Bolzano-Weierstrass theorem in .]
Let be a subset and let be a mapping such that for all , where is the Euclidean distance in . Prove that if is closed and bounded, then is a bijection. Is this result still true if we drop the boundedness assumption on ? Justify your answer.
Paper 4, Section I,
commentLet be a holomorphic function with . Does there exist a holomorphic function defined in for which ? Does there exist a holomorphic function defined in for which ? Justify your answers.
Paper 4, Section II, A
commentState the convolution theorem for Fourier transforms.
The function satisfies
on the half-plane , subject to the boundary conditions
Using Fourier transforms, show that
and hence that
Paper 4, Section I, B
commentDefine the notions of magnetic flux, electromotive force and resistance, in the context of a single closed loop of wire. Use the Maxwell equation
to derive Faraday's law of induction for the loop, assuming the loop is at rest.
Suppose now that the magnetic field is where is a constant, and that the loop of wire, with resistance , is a circle of radius a lying in the plane. Calculate the current in the wire as a function of time.
Explain briefly why, even in a time-independent magnetic field, an electromotive force may be produced in a loop of wire that moves through the field, and state the law of induction in this situation.
Paper 4, Section II, A
commentThe equations governing the flow of a shallow layer of inviscid liquid of uniform depth rotating with angular velocity about the vertical -axis are
where are the - and -components of velocity, respectively, and is the elevation of the free surface. Show that these equations imply that
Consider an initial state where there is flow in the -direction given by
Find the initial potential vorticity.
Show that when this initial state adjusts, there is a final steady state independent of in which satisfies
where .
In the case , find the final free surface elevation that is finite at large and which is continuous and has continuous slope at , and show that it is negative for all .
Paper 4, Section II, G
commentLet be a smooth closed surface. Define the principal curvatures and at a point . Prove that the Gauss curvature at is the product of the two principal curvatures.
A point is called a parabolic point if at least one of the two principal curvatures vanishes. Suppose is a plane and is tangent to along a smooth closed curve . Show that is composed of parabolic points.
Can both principal curvatures vanish at a point of ? Briefly justify your answer.
Paper 4, Section I,
commentAn idempotent element of a ring is an element satisfying . A nilpotent element is an element e satisfying for some .
Let be non-zero. In the ring , can the polynomial be (i) an idempotent, (ii) a nilpotent? Can satisfy the equation ? Justify your answers.
Paper 4, Section II, G
commentLet be a commutative ring with unit 1. Prove that an -module is finitely generated if and only if it is a quotient of a free module , for some .
Let be a finitely generated -module. Suppose now is an ideal of , and is an -homomorphism from to with the property that
Prove that satisfies an equation
where each . [You may assume that if is a matrix over , then (id), with id the identity matrix.]
Deduce that if satisfies , then there is some satisfying
Give an example of a finitely generated -module and a proper ideal of satisfying the hypothesis , and for your example, give an explicit such element .
Paper 4, Section I, F
commentLet be a complex vector space with basis . Define by for and . Show that is diagonalizable and find its eigenvalues. [You may use any theorems you wish, as long as you state them clearly.]
Paper 4, Section II, F
commentLet be a finite-dimensional real vector space of dimension . A bilinear form is nondegenerate if for all in , there is some with . For , define . Assuming is nondegenerate, show that whenever .
Suppose that is a nondegenerate, symmetric bilinear form on . Prove that there is a basis of with for . [If you use the fact that symmetric matrices are diagonalizable, you must prove it.]
Define the signature of a quadratic form. Explain how to determine the signature of the quadratic form associated to from the basis you constructed above.
A linear subspace is said to be isotropic if for all . Show that if is nondegenerate, the maximal dimension of an isotropic subspace of is , where is the signature of the quadratic form associated to .
Paper 4, Section I, H
commentLet be an irreducible Markov chain with . Define the meaning of the statements:
(i) state is transient,
(ii) state is aperiodic.
Give a criterion for transience that can be expressed in terms of the probabilities .
Prove that if a state is transient then all states are transient.
Prove that if a state is aperiodic then all states are aperiodic.
Suppose that unless is divisible by 3 . Given any other state , prove that unless is divisible by 3 .
Paper 4, Section I, D
commentShow that the general solution of the wave equation
can be written in the form
Hence derive the solution subject to the initial conditions
Paper 4, Section II, D
commentLet be a two-dimensional domain with boundary , and let
where is a point in the interior of . From Green's second identity,
derive Green's third identity
[Here denotes the normal derivative on .]
Consider the Dirichlet problem on the unit :
Show that, with an appropriate function , the solution can be obtained by the formula
State the boundary conditions on and explain how is related to .
For , prove the identity
and deduce that if the point lies on the unit circle, then
Hence, using the method of images, or otherwise, find an expression for the function . [An expression for is not required.]
Paper 4, Section II, F
commentSuppose and are topological spaces. Define the product topology on . Let be the projection. Show that a map is continuous if and only if and are continuous.
Prove that if and are connected, then is connected.
Let be the topological space whose underlying set is , and whose open sets are of the form for , along with the empty set and the whole space. Describe the open sets in . Are the maps defined by and continuous? Justify your answers.
Paper 4, Section I, D
commentState the Dahlquist equivalence theorem regarding convergence of a multistep method.
The multistep method, with a real parameter ,
is of order 2 for any , and also of order 3 for . Determine all values of for which the method is convergent, and find the order of convergence.
Paper 4, Section II, 20H
commentDescribe the Ford-Fulkerson algorithm.
State conditions under which the algorithm is guaranteed to terminate in a finite number of steps. Explain why it does so, and show that it finds a maximum flow. [You may assume that the value of a flow never exceeds the value of any cut.]
In a football league of teams the season is partly finished. Team has already won matches. Teams and are to meet in further matches. Thus the total number of remaining matches is . Assume there will be no drawn matches. We wish to determine whether it is possible for the outcomes of the remaining matches to occur in such a way that at the end of the season the numbers of wins by the teams are .
Invent a network flow problem in which the maximum flow from source to sink equals if and only if is a feasible vector of final wins.
Illustrate your idea by answering the question of whether or not is a possible profile of total end-of-season wins when , and with
Paper 4, Section I,
commentIn terms of quantum states, what is meant by energy degeneracy?
A particle of mass is confined within the box and . The potential vanishes inside the box and is infinite outside. Find the allowed energies by considering a stationary state wavefunction of the form
Write down the normalised ground state wavefunction. Assuming that , give the energies of the first three excited states.
Paper 4, Section II, H
commentFrom each of 3 populations, data points are sampled and these are believed to obey
where , the are independent and identically distributed as , and is unknown. Let .
(i) Find expressions for and , the least squares estimates of and .
(ii) What are the distributions of and ?
(iii) Show that the residual sum of squares, , is given by
Calculate when ,
(iv) is the hypothesis that . Find an expression for the maximum likelihood estimator of under the assumption that is true. Calculate its value for the above data.
(v) Explain (stating without proof any relevant theory) the rationale for a statistic which can be referred to an distribution to test against the alternative that it is not true. What should be the degrees of freedom of this distribution? What would be the outcome of a size test of with the above data?
Paper 4, Section II, B
commentConsider a functional
where is smooth in all its arguments, is a function and . Consider the function where is a small function which vanishes at and . Obtain formulae for the first and second variations of about the function . Derive the Euler-Lagrange equation from the first variation, and state its variational interpretation.
Suppose now that
where and . Find the Euler-Lagrange equation and the formula for the second variation of . Show that the function makes stationary, and that it is a (local) minimizer if .
Show that when , the function is not a minimizer of .