Paper 4, Section II, D

Methods | Part IB, 2012

Let DR2D \subset \mathbb{R}^{2} be a two-dimensional domain with boundary S=DS=\partial D, and let

G2=G2(r,r0)=12πlogrr0G_{2}=G_{2}\left(\mathbf{r}, \mathbf{r}_{0}\right)=\frac{1}{2 \pi} \log \left|\mathbf{r}-\mathbf{r}_{0}\right|

where r0\mathbf{r}_{0} is a point in the interior of DD. From Green's second identity,

S(ϕψnψϕn)d=D(ϕ2ψψ2ϕ)da\int_{S}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) d \ell=\int_{D}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d a

derive Green's third identity

u(r0)=DG22uda+S(uG2nG2un)du\left(\mathbf{r}_{0}\right)=\int_{D} G_{2} \nabla^{2} u d a+\int_{S}\left(u \frac{\partial G_{2}}{\partial n}-G_{2} \frac{\partial u}{\partial n}\right) d \ell

[Here n\frac{\partial}{\partial n} denotes the normal derivative on SS.]

Consider the Dirichlet problem on the unit discD1={rR2:r1}\operatorname{disc} D_{1}=\left\{\mathbf{r} \in \mathbb{R}^{2}:|\mathbf{r}| \leqslant 1\right\} :

2u=0,rD1u(r)=f(r),rS1=D1\begin{aligned} \nabla^{2} u=0, & \mathbf{r} \in D_{1} \\ u(\mathbf{r})=f(\mathbf{r}), & \mathbf{r} \in S_{1}=\partial D_{1} \end{aligned}

Show that, with an appropriate function G(r,r0)G\left(\mathbf{r}, \mathbf{r}_{0}\right), the solution can be obtained by the formula

u(r0)=S1f(r)nG(r,r0)du\left(\mathbf{r}_{0}\right)=\int_{S_{1}} f(\mathbf{r}) \frac{\partial}{\partial n} G\left(\mathbf{r}, \mathbf{r}_{0}\right) d \ell

State the boundary conditions on GG and explain how GG is related to G2G_{2}.

For r,r0R2\mathbf{r}, \mathbf{r}_{0} \in \mathbb{R}^{2}, prove the identity

rrr0r=r0r0rr0\left|\frac{\mathbf{r}}{|\mathbf{r}|}-\mathbf{r}_{0}\right| \mathbf{r}||=\left|\frac{\mathbf{r}_{0}}{\left|\mathbf{r}_{0}\right|}-\mathbf{r}\right| \mathbf{r}_{0}|| \text {, }

and deduce that if the point r\mathbf{r} lies on the unit circle, then

rr0=r0rr0, where r0=r0r02\left|\mathbf{r}-\mathbf{r}_{0}\right|=\left|\mathbf{r}_{0}\right|\left|\mathbf{r}-\mathbf{r}_{0}^{*}\right|, \text { where } \mathbf{r}_{0}^{*}=\frac{\mathbf{r}_{0}}{\left|\mathbf{r}_{0}\right|^{2}}

Hence, using the method of images, or otherwise, find an expression for the function G(r,r0)G\left(\mathbf{r}, \mathbf{r}_{0}\right). [An expression for nG\frac{\partial}{\partial n} G is not required.]

Typos? Please submit corrections to this page on GitHub.