Part IB, 2018, Paper 3
Part IB, 2018, Paper 3
Jump to course
Paper 3, Section I,
commentFor a continuous function , define
Show that
for every continuous function , where denotes the Euclidean norm on .
Find all continuous functions with the property that
regardless of the norm on .
[Hint: start by analysing the case when is the Euclidean norm .]
Paper 3, Section II, F
comment(a) Let and let be functions for What does it mean to say that the sequence converges uniformly to on ? What does it mean to say that is uniformly continuous?
(b) Let be a uniformly continuous function. Determine whether each of the following statements is true or false. Give reasons for your answers.
(i) If for each and each , then uniformly on .
(ii) If for each and each , then uniformly on .
(c) Let be a closed, bounded subset of . For each , let be a continuous function such that is a decreasing sequence for each . If is such that for each there is with , show that there is such that .
Deduce the following: If is a continuous function for each such that is a decreasing sequence for each , and if the pointwise limit of is a continuous function , then uniformly on .
Paper 3, Section II, F
commentLet and let be analytic.
(a) If there is a point such that for all , prove that is constant.
(b) If and for all , prove that for all .
(c) Show that there is a constant independent of such that if and for all then whenever
[Hint: you may find it useful to consider the principal branch of the map .]
(d) Does the conclusion in (c) hold if we replace the hypothesis for with the hypothesis for , and keep all other hypotheses? Justify your answer.
Paper 3, Section I, A
comment(a) Let . Define the branch cut of as such that
Show that is an odd function.
(b) Let .
(i) Show that is a branch point of .
(ii) Define the branch cuts of as such that
Find , where denotes just above the branch cut, and denotes just below the branch cut.
Paper 3, Section II, C
commentUse Maxwell's equations to show that
where is a bounded region, its boundary and its outward-pointing normal. Give an interpretation for each of the terms in this equation.
A certain capacitor consists of two conducting, circular discs, each of large area , separated by a small distance along their common axis. Initially, the plates carry charges and . At time the plates are connected by a resistive wire, causing the charge on the plates to decay slowly as for some constant . Construct the Poynting vector and show that energy flows radially out of the capacitor as it discharges.
Paper 3, Section II, D
commentA soap bubble of radius is attached to the end of a long, narrow straw of internal radius and length , the other end of which is open to the atmosphere. The pressure difference between the inside and outside of the bubble is , where is the surface tension of the soap bubble. At time and the air in the straw is at rest. Assume that the flow of air through the straw is irrotational and consider the pressure drop along the straw to show that subsequently
where is the density of air.
By multiplying the equation by and integrating, or otherwise, determine an implicit equation for and show that the bubble disappears in a time
[Hint: The substitution can be used.]
Paper 3, Section I, G
commentConsider a quadrilateral in the hyperbolic plane whose sides are hyperbolic line segments. Suppose angles and are right-angles. Prove that is longer than .
[You may use without proof the distance formula in the upper-half-plane model
Paper 3, Section II, G
commentLet be an open subset of the plane , and let be a smooth parametrization of a surface . A coordinate curve is an arc either of the form
for some constant and , or of the form
for some constant and . A coordinate rectangle is a rectangle in whose sides are coordinate curves.
Prove that all coordinate rectangles in have opposite sides of the same length if and only if at all points of , where and are the usual components of the first fundamental form, and are coordinates in .
Paper 3, Section I,
comment(a) Find all integer solutions to .
(b) Find all the irreducibles in of norm 9 .
Paper 3, Section II, G
comment(a) State Gauss's Lemma.
(b) State and prove Eisenstein's criterion for the irreducibility of a polynomial.
(c) Determine whether or not the polynomial
is irreducible over .
Paper 3, Section II, E
commentState and prove the Cayley-Hamilton Theorem.
Let be an complex matrix. Using division of polynomials, show that if is a polynomial then there is another polynomial of degree at most such that for each eigenvalue of and such that .
Hence compute the entry of the matrix when
Paper 3, Section I, H
commentThe mathematics course at the University of Barchester is a three-year one. After the end-of-year examinations there are three possibilities:
(i) failing and leaving (probability );
(ii) taking that year again (probability );
(iii) going on to the next year (or graduating, if the current year is the third one) (probability ).
Thus there are five states for a student year, year, year, left without a degree, graduated).
Write down the transition matrix. Classify the states, assuming . Find the probability that a student will eventually graduate.
Paper 3, Section I, A
comment(a) Determine the Green's function satisfying
with . Here ' denotes differentiation with respect to .
(b) Using the Green's function, solve
with .
Paper 3, Section II, A
commentConsider the Dirac delta function, , defined by the sampling property
for any suitable function and real constant .
(a) Show that for any non-zero .
(b) Show that , where denotes differentiation with respect to .
(c) Calculate
where is the derivative of the delta function.
(d) For
show that .
(e) Find expressions in terms of the delta function and its derivatives for
(i)
(ii)
(f) Hence deduce that
[You may assume that
Paper 3, Section I,
commentWhat does it mean to say that a topological space is connected? If is a topological space and , show that there is a connected subspace of so that if is any other connected subspace containing then .
Show that the sets partition .
Paper 3, Section II, D
commentTaylor's theorem for functions is given in the form
Use integration by parts to show that
Let be a linear functional on such that for . Show that
where the Peano kernel function You may assume that the functional commutes with integration over a fixed interval.]
The error in the mid-point rule for numerical quadrature on is given by
Show that if is a linear polynomial. Find the Peano kernel function corresponding to explicitly and verify the formula ( ) in the case .
Paper 3, Section II, 21H
commentState and prove the Lagrangian Sufficiency Theorem.
The manufacturers, and , of two competing soap powders must plan how to allocate their advertising resources ( and pounds respectively) among distinct geographical regions. If and denote, respectively, the resources allocated to area by and then the number of packets sold by and in area are
respectively, where is the total market in area , and are known constants. The difference between the amount sold by and is then
seeks to maximize this quantity, while seeks to minimize it.
(i) If knows 's allocation, how should choose ?
(ii) Determine the best strategies for and if each assumes the other will know its strategy and react optimally.
Paper 3, Section I, B
commentWhat is meant by the statement that an operator is Hermitian?
Consider a particle of mass in a real potential in one dimension. Show that the Hamiltonian of the system is Hermitian.
Starting from the time-dependent Schrödinger equation, show that
where is the momentum operator and denotes the expectation value of the operator .
Paper 3, Section II, B
commentWhat is the physical significance of the expectation value
of an observable in the normalised state ? Let and be two observables. By considering the norm of for real values of , show that
Deduce the generalised uncertainty relation
where the uncertainty in the state is defined by
A particle of mass moves in one dimension under the influence of the potential . By considering the commutator , show that every energy eigenvalue satisfies
Paper 3, Section II, H
commentA treatment is suggested for a particular illness. The results of treating a number of patients chosen at random from those in a hospital suffering from the illness are shown in the following table, in which the entries are numbers of patients.
Describe the use of Pearson's statistic in testing whether the treatment affects recovery, and outline a justification derived from the generalised likelihood ratio statistic. Show that
[Hint: You may find it helpful to observe that
Comment on the use of this statistical technique when
Paper 3, Section I, B
commentFor a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar coordinates is
Determine the equations of motion. Show that is a conserved quantity, and use this result to simplify the equation of motion for . Deduce that
is a conserved quantity. What is the interpretation of ?