Part IB, 2017, Paper 2
Part IB, 2017, Paper 2
Jump to course
Paper 2, Section I, G
commentLet . What does it mean to say that a sequence of real-valued functions on is uniformly convergent?
Let be functions.
(a) Show that if each is continuous, and converges uniformly on to , then is also continuous.
(b) Suppose that, for every converges uniformly on . Need converge uniformly on ? Justify your answer.
Paper 2, Section II, G
commentLet be a real vector space. What is a norm on ? Show that if is a norm on , then the maps for ) and (for ) are continuous with respect to the norm.
Let be a subset containing 0 . Show that there exists at most one norm on for which is the open unit ball.
Suppose that satisfies the following two properties:
if is a nonzero vector, then the line meets in a set of the form for some ;
if and then .
Show that there exists a norm for which is the open unit ball.
Identify in the following two cases:
(i) for all .
(ii) the interior of the square with vertices .
Let be the set
Is there a norm on for which is the open unit ball? Justify your answer.
Paper 2, Section II, 13A
commentState the residue theorem.
By considering
with a suitably chosen contour in the upper half plane or otherwise, evaluate the real integrals
and
where is taken to be the positive square root.
Paper 2, Section I,
commentState Gauss's Law in the context of electrostatics.
A spherically symmetric capacitor consists of two conductors in the form of concentric spherical shells of radii and , with . The inner sphere carries a charge and the outer sphere carries a charge . Determine the electric field and the electrostatic potential in the regions and . Show that the capacitance is
and calculate the electrostatic energy of the system in terms of and .
Paper 2, Section II, C
commentIn special relativity, the electromagnetic fields can be derived from a 4-vector potential . Using the Minkowski metric tensor and its inverse , state how the electromagnetic tensor is related to the 4-potential, and write out explicitly the components of both and in terms of those of and .
If is a Lorentz transformation of the spacetime coordinates from one inertial frame to another inertial frame , state how is related to .
Write down the Lorentz transformation matrix for a boost in standard configuration, such that frame moves relative to frame with speed in the direction. Deduce the transformation laws
where
In frame , an infinitely long wire of negligible thickness lies along the axis. The wire carries positive charges per unit length, which travel at speed in the direction, and negative charges per unit length, which travel at speed in the direction. There are no other sources of the electromagnetic field. Write down the electric and magnetic fields in in terms of Cartesian coordinates. Calculate the electric field in frame , which is related to by a boost by speed as described above. Give an explanation of the physical origin of your expression.
Paper 2, Section I,
commentFrom Euler's equations describing steady inviscid fluid flow under the action of a conservative force, derive Bernoulli's equation for the pressure along a streamline of the flow, defining all variables that you introduce.
Water fills an inverted, open, circular cone (radius increasing upwards) of half angle to a height above its apex. At time , the tip of the cone is removed to leave a small hole of radius . Assuming that the flow is approximately steady while the depth of water is much larger than , show that the time taken for the water to drain is approximately
Paper 2, Section II, G
commentLet be a hyperplane in , where is a unit vector and is a constant. Show that the reflection map
is an isometry of which fixes pointwise.
Let be distinct points in . Show that there is a unique reflection mapping to , and that if and only if and are equidistant from the origin.
Show that every isometry of can be written as a product of at most reflections. Give an example of an isometry of which cannot be written as a product of fewer than 3 reflections.
Paper 2, Section I, E
comment(a) Define what is meant by a unique factorisation domain and by a principal ideal domain. State Gauss's lemma and Eisenstein's criterion, without proof.
(b) Find an example, with justification, of a ring and a subring such that
(i) is a principal ideal domain, and
(ii) is a unique factorisation domain but not a principal ideal domain.
Paper 2, Section II, E
commentLet be a commutative ring.
(a) Let be the set of nilpotent elements of , that is,
Show that is an ideal of .
(b) Assume is Noetherian and assume is a non-empty subset such that if , then . Let be an ideal of disjoint from . Show that there is a prime ideal of containing and disjoint from .
(c) Again assume is Noetherian and let be as in part (a). Let be the set of all prime ideals of . Show that
Paper 2, Section I, F
commentState and prove the Rank-Nullity theorem.
Let be a linear map from to of rank 2 . Give an example to show that may be the direct sum of the kernel of and the image of , and also an example where this is not the case.
Paper 2, Section II, F
commentLet and be linear maps between finite-dimensional real vector spaces.
Show that the rank satisfies . Show also that . For each of these two inequalities, give examples to show that we may or may not have equality.
Now let have dimension and let be a linear map of rank such that . Find the rank of for each .
Paper 2, Section II, H
commentLet be i.i.d. random variables with values in and . Moreover, suppose that the greatest common divisor of is 1 . Consider the following process
(a) Show that is a Markov chain and find its transition probabilities.
(b) Let . Find .
(c) Find the limit as of . State carefully any theorems from the course that you are using.
Paper 2, Section I, B
commentExpand as a Fourier series on .
By integrating the series show that on can be written as
where , should be determined and
By evaluating another way show that
Paper 2, Section II, A
commentLaplace's equation for in cylindrical coordinates , is
Use separation of variables to find an expression for the general solution to Laplace's equation in cylindrical coordinates that is -periodic in .
Find the bounded solution that satisfies
Paper 2, Section I, E
commentLet be a function between metric spaces.
(a) Give the definition for to be continuous. Show that is continuous if and only if is an open subset of for each open subset of .
(b) Give an example of such that is not continuous but is an open subset of for every open subset of .
Paper 2, Section II, C
commentDefine the linear least-squares problem for the equation , where is an matrix with is a given vector and is an unknown vector.
If , where is an orthogonal matrix and is an upper triangular matrix in standard form, explain why the least-squares problem is solved by minimizing the Euclidean norm .
Using the method of Householder reflections, find a QR factorization of the matrix
Hence find the solution of the least-squares problem in the case
Paper 2, Section I, H
commentConsider the following optimization problem
(a) Write down the Lagrangian for this problem. State the Lagrange sufficiency theorem.
(b) Formulate the dual problem. State and prove the weak duality property.
Paper 2, Section II, B
comment(a) The potential for the one-dimensional harmonic oscillator is . By considering the associated time-independent Schrödinger equation for the wavefunction with substitutions
show that the allowed energy levels are given by for [You may assume without proof that must be a polynomial for to be normalisable.]
(b) Consider a particle with charge and mass subject to the one-dimensional harmonic oscillator potential . You may assume that the normalised ground state of this potential is
The particle is in the stationary state corresponding to when at time , an electric field of constant strength is turned on, adding an extra term to the harmonic potential.
(i) Using the result of part (a) or otherwise, find the energy levels of the new potential.
(ii) Show that the probability of finding the particle in the ground state immediately after is given by . [You may assume that .]
Paper 2, Section I, 8H
comment(a) Define a confidence interval for an unknown parameter .
(b) Let be i.i.d. random variables with distribution with unknown. Find a confidence interval for .
[You may use the fact that
(c) Let be independent with to be estimated. Find a confidence interval for .
Suppose that we have two observations and . What might be a better interval to report in this case?
Paper 2, Section II, D
commentA proto-planet of mass in a uniform galactic dust cloud has kinetic and potential energies
where is constant. State Hamilton's principle and use it to determine the equations of motion for the proto-planet.
Write down two conserved quantities of the motion and state why their existence illustrates Noether's theorem.
Determine the Hamiltonian of this system, where and are the conjugate momenta corresponding to .
Write down Hamilton's equations for this system and use them to show that
and is a constant. With the aid of a diagram, explain why there is a stable circular orbit.