Part IB, 2011, Paper 1
Part IB, 2011, Paper 1
Jump to course
Paper 1, Section II, E
commentWhat is meant by saying that a sequence of functions converges uniformly to a function ?
Let be a sequence of differentiable functions on with continuous and such that converges for some point . Assume in addition that converges uniformly on . Prove that converges uniformly to a differentiable function on and for all . [You may assume that the uniform limit of continuous functions is continuous.]
Show that the series
converges for and is uniformly convergent on for any . Show that is differentiable on and
[You may use the Weierstrass -test provided it is clearly stated.]
Paper 1, Section I, A
commentDerive the Cauchy-Riemann equations satisfied by the real and imaginary parts of a complex analytic function .
If is constant on , prove that is constant on .
Paper 1, Section II, A
comment(i) Let and let
Here the logarithms take their principal values. Give a sketch to indicate the positions of the branch cuts implied by the definitions of and .
(ii) Let . Explain why is analytic in the annulus for any . Obtain the first three terms of the Laurent expansion for around in this annulus and hence evaluate
Paper 1, Section II, D
commentStarting from the relevant Maxwell equation, derive Gauss's law in integral form.
Use Gauss's law to obtain the potential at a distance from an infinite straight wire with charge per unit length.
Write down the potential due to two infinite wires parallel to the -axis, one at with charge per unit length and the other at with charge per unit length.
Find the potential and the electric field in the limit with where is fixed. Sketch the equipotentials and the electric field lines.
Paper 1, Section I, B
commentInviscid fluid is contained in a square vessel with sides of length lying between . The base of the container is at where and the horizontal surface is at when the fluid is at rest. The variation of pressure of the air above the fluid may be neglected.
Small amplitude surface waves are excited in the vessel.
(i) Now let . Explain why on dimensional grounds the frequencies of such waves are of the form
for some positive dimensionless constants , where is the gravitational acceleration.
It is given that the velocity potential is of the form
where and are integers and is a constant.
(ii) Why do cosines, rather than sines, appear in this expression?
(iii) Give an expression for in terms of and .
(iv) Give all possible values that can take between 1 and 10 inclusive. How many different solutions for correspond to each of these values of
Paper 1, Section II, B
commentA spherical bubble in an incompressible fluid of density has radius . Write down an expression for the velocity field at a radius .
The pressure far from the bubble is . What is the pressure at radius ?
Find conditions on and its time derivatives that ensure that the maximum pressure in the fluid is reached at a radius where . Give an expression for this maximum pressure when the conditions hold.
Give the most general form of that ensures that the pressure at is for all time.
Paper 1, Section I, F
commentSuppose that is the upper half-plane, . Using the Riemannian metric , define the length of a curve and the area of a region in .
Find the area of
Paper 1, Section II, F
comment(i) Suppose that is a finite group of order , where is prime and does not divide . Prove the first Sylow theorem, that has at least one subgroup of order , and state the remaining Sylow theorems without proof.
(ii) Suppose that are distinct primes. Show that there is no simple group of order .
Paper 1, Section I, G
comment(i) State the rank-nullity theorem for a linear map between finite-dimensional vector spaces.
(ii) Show that a linear transformation of a finite-dimensional vector space is bijective if it is injective or surjective.
(iii) Let be the -vector space of all polynomials in with coefficients in . Give an example of a linear transformation which is surjective but not bijective.
Paper 1, Section II, G
commentLet be finite-dimensional vector spaces over a field and a linear map.
(i) Show that is injective if and only if the image of every linearly independent subset of is linearly independent in .
(ii) Define the dual space of and the dual map .
(iii) Show that is surjective if and only if the image under of every linearly independent subset of is linearly independent in .
Paper 1, Section II, H
commentLet be the transition matrix for an irreducible Markov chain on the finite state space .
(i) What does it mean to say is the invariant distribution for the chain?
(ii) What does it mean to say the chain is in detailed balance with respect to ?
(iii) A symmetric random walk on a connected finite graph is the Markov chain whose state space is the set of vertices of the graph and whose transition probabilities are
where is the number of vertices adjacent to vertex . Show that the random walk is in detailed balance with respect to its invariant distribution.
(iv) Let be the invariant distribution for the transition matrix , and define an inner product for vectors by the formula
Show that the equation
holds for all vectors if and only if the chain is in detailed balance with respect to . [Here means .]
Paper 1, Section II, A
commentLet be a real function defined on an interval with Fourier series
State and prove Parseval's theorem for and its Fourier series. Write down the formulae for and in terms of and .
Find the Fourier series of the square wave function defined on by
Hence evaluate
Using some of the above results evaluate
What is the sum of the Fourier series for at ? Comment on your answer.
Paper 1, Section II, G
commentLet be a metric space with the distance function . For a subset of , its diameter is defined as .
Show that, if is compact and is an open covering of , then there exists an such that every subset with is contained in some .
Paper 1, Section I, B
commentOrthogonal monic polynomials are defined with respect to the inner product , where is of degree . Show that such polynomials obey a three-term recurrence relation
for appropriate choices of and .
Now suppose that is an even function of . Show that the are even or odd functions of according to whether is even or odd.
Paper 1, Section II, B
commentConsider a function defined on the domain . Find constants , so that for any fixed ,
is exactly satisfied for polynomials of degree less than or equal to two.
By using the Peano kernel theorem, or otherwise, show that
where . Thus show that
Paper 1, Section I, H
commentSuppose that and and and where and are -dimensional column vectors, and are -dimensional column vectors, and is an matrix. Here, the vector inequalities are interpreted component-wise.
(i) Show that .
(ii) Find the maximum value of
You should state any results from the course used in your solution.
Paper 1, Section II, C
commentFor a quantum mechanical particle moving freely on a circle of length , the wavefunction satisfies the Schrödinger equation
on the interval , and also the periodicity conditions , and . Find the allowed energy levels of the particle, and their degeneracies.
The current is defined as
where is a normalized state. Write down the general normalized state of the particle when it has energy , and show that in any such state the current is independent of and . Find a state with this energy for which the current has its maximum positive value, and find a state with this energy for which the current vanishes.
Paper 1, Section I,
commentConsider the experiment of tossing a coin times. Assume that the tosses are independent and the coin is biased, with unknown probability of heads and of tails. A total of heads is observed.
(i) What is the maximum likelihood estimator of ?
Now suppose that a Bayesian statistician has the prior distribution for .
(ii) What is the posterior distribution for ?
(iii) Assuming the loss function is , show that the statistician's point estimate for is given by
[The distribution has density for and
Paper 1, Section II, H
commentLet be independent random variables with probability mass function , where is an unknown parameter.
(i) What does it mean to say that is a sufficient statistic for ? State, but do not prove, the factorisation criterion for sufficiency.
(ii) State and prove the Rao-Blackwell theorem.
Now consider the case where for non-negative integer and .
(iii) Find a one-dimensional sufficient statistic for .
(iv) Show that is an unbiased estimator of .
(v) Find another unbiased estimator which is a function of the sufficient statistic and that has smaller variance than . You may use the following fact without proof: has the Poisson distribution with parameter .
Paper 1, Section I, D
comment(i) Write down the Euler-Lagrange equations for the volume integral
where is the unit ball , and verify that the function gives a stationary value of the integral subject to the condition on the boundary.
(ii) Write down the Euler-Lagrange equations for the integral
where the dot denotes differentiation with respect to , and verify that the functions give a stationary value of the integral subject to the boundary conditions and .