Paper 1, Section II, A

Methods | Part IB, 2011

Let f(t)f(t) be a real function defined on an interval (T,T)(-T, T) with Fourier series

f(t)=a02+n=1(ancosnπtT+bnsinnπtT)f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{T}+b_{n} \sin \frac{n \pi t}{T}\right)

State and prove Parseval's theorem for f(t)f(t) and its Fourier series. Write down the formulae for a0,ana_{0}, a_{n} and bnb_{n} in terms of f(t),cosnπtTf(t), \cos \frac{n \pi t}{T} and sinnπtT\sin \frac{n \pi t}{T}.

Find the Fourier series of the square wave function defined on (π,π)(-\pi, \pi) by

g(t)={0π<t010<t<πg(t)=\left\{\begin{array}{lr} 0 & -\pi<t \leqslant 0 \\ 1 & 0<t<\pi \end{array}\right.

Hence evaluate

k=0(1)k(2k+1)\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)}

Using some of the above results evaluate

k=01(2k+1)2\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}

What is the sum of the Fourier series for g(t)g(t) at t=0t=0 ? Comment on your answer.

Typos? Please submit corrections to this page on GitHub.