Paper 1, Section I, D

Variational Principles | Part IB, 2011

(i) Write down the Euler-Lagrange equations for the volume integral

V(uu+12u)dV\int_{V}(\nabla u \cdot \nabla u+12 u) d V

where VV is the unit ball x2+y2+z21x^{2}+y^{2}+z^{2} \leqslant 1, and verify that the function u(x,y,z)=x2+y2+z2u(x, y, z)=x^{2}+y^{2}+z^{2} gives a stationary value of the integral subject to the condition u=1u=1 on the boundary.

(ii) Write down the Euler-Lagrange equations for the integral

01(x˙2+y˙2+4x+4y)dt\int_{0}^{1}\left(\dot{x}^{2}+\dot{y}^{2}+4 x+4 y\right) d t

where the dot denotes differentiation with respect to tt, and verify that the functions x(t)=t2,y(t)=t2x(t)=t^{2}, y(t)=t^{2} give a stationary value of the integral subject to the boundary conditions x(0)=y(0)=0x(0)=y(0)=0 and x(1)=y(1)=1x(1)=y(1)=1.

Typos? Please submit corrections to this page on GitHub.