Part IA, 2018, Paper 4
Part IA, 2018, Paper 4
Jump to course
Paper 4, Section I, 3A
comment(a) Define an inertial frame.
(b) Specify three different types of Galilean transformation on inertial frames whose space coordinates are and whose time coordinate is .
(c) State the Principle of Galilean Relativity.
(d) Write down the equation of motion for a particle in one dimension in a potential . Prove that energy is conserved. A particle is at position at time . Find an expression for time as a function of in terms of an integral involving .
(e) Write down the values of any equilibria and state (without justification) whether they are stable or unstable for:
(i)
(ii) for and .
Paper 4, Section I, A
commentExplain what is meant by a central force acting on a particle moving in three dimensions.
Show that the angular momentum of a particle about the origin for a central force is conserved, and hence that its path lies in a plane.
Show that, in the approximation in which the Sun is regarded as fixed and only its gravitational field is considered, a straight line joining the Sun and an orbiting planet sweeps out equal areas in equal time (Kepler's second law).
Paper 4, Section II, A
commentThe position and velocity of a particle of mass are measured in a frame which rotates at constant angular velocity with respect to an inertial frame. The particle is subject to a force . What is the equation of motion of the particle?
Find the trajectory of the particle in the coordinates if and at and .
Find the maximum value of the speed of the particle and the times at which it travels at this speed.
[Hint: You may find using the variable helpful.]
Paper 4, Section II, A
commentWrite down the Lorentz force law for a charge travelling at velocity in an electric field and magnetic field .
In a space station which is in an inertial frame, an experiment is performed in vacuo where a ball is released from rest a distance from a wall. The ball has charge and at time , it is a distance from the wall. A constant electric field of magnitude points toward the wall in a perpendicular direction, but there is no magnetic field. Find the speed of the ball on its first impact.
Every time the ball bounces, its speed is reduced by a factor . Show that the total distance travelled by the ball before it comes to rest is
where and are quadratic functions which you should find explicitly.
A gas leak fills the apparatus with an atmosphere and the experiment is repeated. The ball now experiences an additional drag force , where is the instantaneous velocity of the ball and . Solve the system before the first bounce, finding an explicit solution for the distance between the ball and the wall as a function of time of the form
where is a function and and are dimensional constants, all of which you should find explicitly.
Paper 4, Section II, A
commentDefine the 4-momentum of a particle of rest mass and velocity . Calculate the power series expansion of the component for small (where is the speed of light in vacuo) up to and including terms of order , and interpret the first two terms.
(a) At CERN, anti-protons are made by colliding a moving proton with another proton at rest in a fixed target. The collision in question produces three protons and an anti-proton. Assume that the rest mass of a proton is identical to the rest mass of an anti-proton. What is the smallest possible speed of the incoming proton (measured in the laboratory frame)?
(b) A moving particle of rest mass decays into particles with 4 -momenta , and rest masses , where . Show that
Thus, show that
(c) A particle decays into particle and a massless particle 1 . Particle subsequently decays into particle and a massless particle 2 . Show that
where and are the 4-momenta of particles 1 and 2 respectively and are the masses of particles and respectively.
Paper 4, Section II, A
commentConsider a rigid body, whose shape and density distribution are rotationally symmetric about a horizontal axis. The body has mass , radius and moment of inertia about its axis of rotational symmetry and is rolling down a non-slip slope inclined at an angle to the horizontal. By considering its energy, calculate the acceleration of the disc down the slope in terms of the quantities introduced above and , the acceleration due to gravity.
(a) A sphere with density proportional to (where is distance to the sphere's centre and is a positive constant) is launched up a non-slip slope of constant incline at the same time, level and speed as a vertical disc of constant density. Find such that the sphere and the disc return to their launch points at the same time.
(b) Two spherical glass marbles of equal radius are released from rest at time on an inclined non-slip slope of constant incline from the same level. The glass in each marble is of constant and equal density, but the second marble has two spherical air bubbles in it whose radii are half the radius of the marbles, initially centred directly above and below the marble's centre, respectively. Each bubble is centred half-way between the centre of the marble and its surface. At a later time , find the ratio of the distance travelled by the first marble and the second. [ You may state without proof any theorems that you use and neglect the mass of air in the bubbles. ]
Paper 4, Section I, E
commentGiven , show that is either an integer or irrational.
Let and be irrational numbers and be rational. Which of and must be irrational? Justify your answers. [Hint: For the last part consider .]
Paper 4, Section I, E
commentState Fermat's theorem.
Let be a prime such that . Prove that there is no solution to
Show that there are infinitely many primes congruent to .
Paper 4, Section II,
commentLet be a positive integer. Show that for any coprime to , there is a unique such that . Show also that if and are integers coprime to , then is also coprime to . [Any version of Bezout's theorem may be used without proof provided it is clearly stated.]
State and prove Wilson's theorem.
Let be a positive integer and be a prime. Show that the exponent of in the prime factorisation of ! is given by where denotes the integer part of .
Evaluate and
Let be a prime and . Let be the exponent of in the prime factorisation of . Find the exponent of in the prime factorisation of , in terms of and .
Paper 4, Section II,
commentLet and be subsets of a finite set . Let . Show that if belongs to for exactly values of , then
where with the convention that , and denotes the indicator function of Hint: Set and consider for which one has .]
Use this to show that the number of elements of that belong to for exactly values of is
Deduce the Inclusion-Exclusion Principle.
Using the Inclusion-Exclusion Principle, prove a formula for the Euler totient function in terms of the distinct prime factors of .
A Carmichael number is a composite number such that for every integer coprime to . Show that if is the product of distinct primes satisfying for , then is a Carmichael number.
Paper 4, Section II, 8E
commentDefine what it means for a set to be countable.
Show that for any set , there is no surjection from onto the power set . Deduce that the set of all infinite sequences is uncountable.
Let be the set of sequences of subsets of such that for all and . Let consist of all members of for which for all but finitely many . Let consist of all members of for which for all but finitely many . For each of and determine whether it is countable or uncountable. Justify your answers.
Paper 4, Section II, E
commentFor let denote the set of all sequences of length . We define the distance between two elements and of to be the number of coordinates in which they differ. Show that for all .
For and let . Show that .
A subset of is called a -code if for all with . Let be the maximum possible value of for a -code in . Show that
Find , carefully justifying your answer.