Paper 4, Section I, E

State Fermat's theorem.

Let $p$ be a prime such that $p \equiv 3(\bmod 4)$. Prove that there is no solution to $x^{2} \equiv-1(\bmod p) .$

Show that there are infinitely many primes congruent to $1(\bmod 4)$.

*Typos? Please submit corrections to this page on GitHub.*