Part IA, 2018, Paper 3
Part IA, 2018, Paper 3
Jump to course
Paper 3, Section I, D
commentProve that every member of is a product of at most three reflections.
Is every member of a product of at most two reflections? Justify your answer.
Paper 3, Section I, D
commentFind the order and the sign of the permutation .
How many elements of have order And how many have order
What is the greatest order of any element of ?
Paper 3, Section II, D
commentState and prove the Direct Product Theorem.
Is the group isomorphic to Is isomorphic to ?
Let denote the group of all invertible complex matrices with , and let be the subgroup of consisting of those matrices with determinant
Determine the centre of .
Write down a surjective homomorphism from to the group of all unit-length complex numbers whose kernel is . Is isomorphic to ?
Paper 3, Section II, D
commentDefine the quotient group , where is a normal subgroup of a group . You should check that your definition is well-defined. Explain why, for finite, the greatest order of any element of is at most the greatest order of any element of .
Show that a subgroup of a group is normal if and only if there is a homomorphism from to some group whose kernel is .
A group is called metacyclic if it has a cyclic normal subgroup such that is cyclic. Show that every dihedral group is metacyclic.
Which groups of order 8 are metacyclic? Is metacyclic? For which is metacyclic?
Paper 3, Section II, D
commentLet be an element of a group . We define a map from to by sending to . Show that is an automorphism of (that is, an isomorphism from to ).
Now let denote the group of automorphisms of (with the group operation being composition), and define a map from to by setting . Show that is a homomorphism. What is the kernel of ?
Prove that the image of is a normal subgroup of .
Show that if is cyclic then is abelian. If is abelian, must be abelian? Justify your answer.
Paper 3, Section II, D
commentDefine the sign of a permutation . You should show that it is well-defined, and also that it is multiplicative (in other words, that it gives a homomorphism from to .
Show also that (for ) this is the only surjective homomorphism from to .
Paper 3, Section I,
commentIn plane polar coordinates , the orthonormal basis vectors and satisfy
Hence derive the expression for the Laplacian operator .
Calculate the Laplacian of , where and are constants. Hence find all solutions to the equation
Explain briefly how you know that there are no other solutions.
Paper 3, Section I, C
commentDerive a formula for the curvature of the two-dimensional curve .
Verify your result for the semicircle with radius given by .
Paper 3, Section II, C
comment(a) Suppose that a tensor can be decomposed as
where is symmetric. Obtain expressions for and in terms of , and check that is satisfied.
(b) State the most general form of an isotropic tensor of rank for , and verify that your answers are isotropic.
(c) The general form of an isotropic tensor of rank 4 is
Suppose that and satisfy the linear relationship , where is isotropic. Express in terms of , assuming that and . If instead and , find all such that .
(d) Suppose that and satisfy the quadratic relationship , where is an isotropic tensor of rank 6 . If is symmetric and is antisymmetric, find the most general non-zero form of and prove that there are only two independent terms. [Hint: You do not need to use the general form of an isotropic tensor of rank 6.]
Paper 3, Section II, C
commentUse Maxwell's equations,
to derive expressions for and in terms of and .
Now suppose that there exists a scalar potential such that , and as . If is spherically symmetric, calculate using Gauss's flux method, i.e. by integrating a suitable equation inside a sphere centred at the origin. Use your result to find and in the case when for and otherwise.
For each integer , let be the sphere of radius centred at the point . Suppose that vanishes outside , and has the constant value in the volume between and for . Calculate and at the point .
Paper 3, Section II, C
commentState the formula of Stokes's theorem, specifying any orientation where needed.
Let . Calculate and verify that .
Sketch the surface defined as the union of the surface and the surface .
Verify Stokes's theorem for on .
Paper 3, Section II, C
commentGiven a one-to-one mapping and between the region in the -plane and the region in the -plane, state the formula for transforming the integral into an integral over , with the Jacobian expressed explicitly in terms of the partial derivatives of and .
Let be the region and consider the change of variables and . Sketch , the curves of constant and the curves of constant in the -plane. Find and sketch the image of in the -plane.
Calculate using this change of variables. Check your answer by calculating directly.