Paper 2, Section I, E

Mathematical Biology | Part II, 2021

Consider a stochastic birth-death process in a population of size n(t)n(t), where deaths occur in pairs for n2n \geqslant 2. The probability per unit time of a birth, nn+1n \rightarrow n+1 for n0n \geqslant 0, is bb, that of a pair of deaths, nn2n \rightarrow n-2 for n2n \geqslant 2, is dnd n, and that of the death of a lonely singleton, 101 \rightarrow 0, is DD.

(a) Write down the master equation for pn(t)p_{n}(t), the probability of a population of size nn at time tt, distinguishing between the cases n2,n=0n \geqslant 2, n=0 and n=1n=1.

(b) For a function f(n),n0f(n), n \geqslant 0, show carefully that

ddtf(n)=bn=0(fn+1fn)pndn=2(fnfn2)npnD(f1f0)p1\frac{d}{d t}\langle f(n)\rangle=b \sum_{n=0}^{\infty}\left(f_{n+1}-f_{n}\right) p_{n}-d \sum_{n=2}^{\infty}\left(f_{n}-f_{n-2}\right) n p_{n}-D\left(f_{1}-f_{0}\right) p_{1}

where fn=f(n)f_{n}=f(n).

(c) Deduce the evolution equation for the mean μ(t)=n\mu(t)=\langle n\rangle, and simplify it for the case D=2dD=2 d.

(d) For the same value of DD, show that

ddtn2=b(2μ+1)4d(n2μ)2dp1\frac{d}{d t}\left\langle n^{2}\right\rangle=b(2 \mu+1)-4 d\left(\left\langle n^{2}\right\rangle-\mu\right)-2 d p_{1}

Deduce that the variance σ2\sigma^{2} in the stationary state for b,d>0b, d>0 satisfies

3b4d12<σ2<3b4d\frac{3 b}{4 d}-\frac{1}{2}<\sigma^{2}<\frac{3 b}{4 d}

Typos? Please submit corrections to this page on GitHub.