Paper 2, Section II, G

Logic and Set Theory | Part II, 2021

Write down the inductive definition of ordinal exponentiation. Show that ωαα\omega^{\alpha} \geqslant \alpha for every ordinal α\alpha. Deduce that, for every ordinal α\alpha, there is a least ordinal α\alpha^{*} with ωα>α\omega^{\alpha^{*}}>\alpha. Show that, if α0\alpha \neq 0, then α\alpha^{*} must be a successor ordinal.

Now let α\alpha be a non-zero ordinal. Show that there exist ordinals β\beta and γ\gamma, where γ<α\gamma<\alpha, and a positive integer nn such that α=ωβn+γ\alpha=\omega^{\beta} n+\gamma. Hence, or otherwise, show that α\alpha can be written in the form

α=ωβ1n1+ωβ2n2++ωβknk\alpha=\omega^{\beta_{1}} n_{1}+\omega^{\beta_{2}} n_{2}+\cdots+\omega^{\beta_{k}} n_{k}

where k,n1,n2,,nkk, n_{1}, n_{2}, \ldots, n_{k} are positive integers and β1>β2>>βk\beta_{1}>\beta_{2}>\cdots>\beta_{k} are ordinals. [We call this the Cantor normal form of α\alpha, and you may henceforth assume that it is unique.]

Given ordinals δ1,δ2\delta_{1}, \delta_{2} and positive integers m1,m2m_{1}, m_{2} find the Cantor normal form of ωδ1m1+ωδ2m2\omega^{\delta_{1}} m_{1}+\omega^{\delta_{2}} m_{2}. Hence, or otherwise, given non-zero ordinals α\alpha and α\alpha^{\prime}, find the Cantor normal form of α+α\alpha+\alpha^{\prime} in terms of the Cantor normal forms

α=ωβ1n1+ωβ2n2++ωβknk\alpha=\omega^{\beta_{1}} n_{1}+\omega^{\beta_{2}} n_{2}+\cdots+\omega^{\beta_{k}} n_{k}

and

α=ωβ1n1+ωβ2n2++ωβknk\alpha^{\prime}=\omega^{\beta_{1}^{\prime}} n_{1}^{\prime}+\omega^{\beta_{2}^{\prime}} n_{2}^{\prime}+\cdots+\omega^{\beta_{k^{\prime}}^{\prime}} n_{k^{\prime}}^{\prime}

of α\alpha and α\alpha^{\prime}.

Typos? Please submit corrections to this page on GitHub.