Paper 1, Section II, 22H

Linear Analysis | Part II, 2021

Let HH be a separable Hilbert space and {ei}\left\{e_{i}\right\} be a Hilbertian (orthonormal) basis of HH. Given a sequence (xn)\left(x_{n}\right) of elements of HH and xHx_{\infty} \in H, we say that xnx_{n} weakly converges to xx_{\infty}, denoted xnxx_{n} \rightarrow x_{\infty}, if hH,limnxn,h=x,h\forall h \in H, \lim _{n \rightarrow \infty}\left\langle x_{n}, h\right\rangle=\left\langle x_{\infty}, h\right\rangle.

(a) Given a sequence (xn)\left(x_{n}\right) of elements of HH, prove that the following two statements are equivalent:

(i) xH\exists x_{\infty} \in H such that xnxx_{n} \rightarrow x_{\infty};

(ii) the sequence (xn)\left(x_{n}\right) is bounded in HH and i1\forall i \geqslant 1, the sequence (xn,ei)\left(\left\langle x_{n}, e_{i}\right\rangle\right) is convergent.

(b) Let (xn)\left(x_{n}\right) be a bounded sequence of elements of HH. Show that there exists xHx_{\infty} \in H and a subsequence (xϕ(n))\left(x_{\phi(n)}\right) such that xϕ(n)xx_{\phi(n)} \rightarrow x_{\infty} in HH.

(c) Let (xn)\left(x_{n}\right) be a sequence of elements of HH and xHx_{\infty} \in H be such that xnxx_{n} \rightarrow x_{\infty}. Show that the following three statements are equivalent:

(i) limnxnx=0\lim _{n \rightarrow \infty}\left\|x_{n}-x_{\infty}\right\|=0;

(ii) limnxn=x\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\left\|x_{\infty}\right\|;

(iii) ϵ>0,I(ϵ)\forall \epsilon>0, \exists I(\epsilon) such that n1,iI(ϵ)xn,ei2<ϵ\forall n \geqslant 1, \sum_{i \geqslant I(\epsilon)}\left|\left\langle x_{n}, e_{i}\right\rangle\right|^{2}<\epsilon.

Typos? Please submit corrections to this page on GitHub.