Paper 1, Section II, C

General Relativity | Part II, 2021

The Weyl tensor CαβγδC_{\alpha \beta \gamma \delta} may be defined (in n=4n=4 spacetime dimensions) as

Cαβγδ=Rαβγδ12(gαγRβδ+gβδRαγgαδRβγgβγRαδ)+16(gαγgβδgαδgβγ)RC_{\alpha \beta \gamma \delta}=R_{\alpha \beta \gamma \delta}-\frac{1}{2}\left(g_{\alpha \gamma} R_{\beta \delta}+g_{\beta \delta} R_{\alpha \gamma}-g_{\alpha \delta} R_{\beta \gamma}-g_{\beta \gamma} R_{\alpha \delta}\right)+\frac{1}{6}\left(g_{\alpha \gamma} g_{\beta \delta}-g_{\alpha \delta} g_{\beta \gamma}\right) R

where RαβγδR_{\alpha \beta \gamma \delta} is the Riemann tensor, RαβR_{\alpha \beta} is the Ricci tensor and RR is the Ricci scalar.

(a) Show that Cβαδα=0C_{\beta \alpha \delta}^{\alpha}=0 and deduce that all other contractions vanish.

(b) A conformally flat metric takes the form

gαβ=e2ωηαβ,g_{\alpha \beta}=e^{2 \omega} \eta_{\alpha \beta},

where ηαβ\eta_{\alpha \beta} is the Minkowski metric and ω\omega is a scalar function. Calculate the Weyl tensor at a given point pp. [You may assume that αω=0\partial_{\alpha} \omega=0 at pp.]

(c) The Schwarzschild metric outside a spherically symmetric mass (such as the Sun, Earth or Moon) is

ds2=(12Mr)dt2+(12Mr)1dr2+r2dΩ2d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}

(i) Calculate the leading-order contribution to the Weyl component CtrtrC_{t r t r} valid at large distances, r2Mr \gg 2 M, beyond the central spherical mass.

(ii) What physical phenomenon, known from ancient times, can be attributed to this component of the Weyl tensor at the location of the Earth? [This is after subtracting off the Earth's own gravitational field, and neglecting the Earth's motion within the solar system.] Briefly explain why your answer is consistent with the Einstein equivalence principle.

Typos? Please submit corrections to this page on GitHub.