Paper 3 , Section I, 7E

Further Complex Methods | Part II, 2021

The Beta function is defined by

B(p,q)=01tp1(1t)q1dtB(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t

for Rep>0\operatorname{Re} p>0 and Req>0\operatorname{Re} q>0.

(a) Prove that B(p,q)=B(q,p)B(p, q)=B(q, p) and find B(1,q)B(1, q).

(b) Show that (p+z)B(p,z+1)=zB(p,z)(p+z) B(p, z+1)=z B(p, z).

(c) For each fixed pp with Rep>0\operatorname{Re} p>0, use part (b) to obtain the analytic continuation of B(p,z)B(p, z) as an analytic function of zCz \in \mathbb{C}, with the exception of the points z=z= 0,1,2,3,0,-1,-2,-3, \ldots

(d) Use part (c) to determine the type of singularity that the function B(p,z)B(p, z) has at z=0,1,2,3,z=0,-1,-2,-3, \ldots, for fixed pp with Rep>0\operatorname{Re} p>0.

Typos? Please submit corrections to this page on GitHub.