Paper 2, Section II, A

Dynamical Systems | Part II, 2021

Consider a modified van der Pol system defined by

x˙=yμ(13x3x)y˙=x+F\begin{aligned} &\dot{x}=y-\mu\left(\frac{1}{3} x^{3}-x\right) \\ &\dot{y}=-x+F \end{aligned}

where μ>0\mu>0 and FF are constants.

(a) A parallelogram PQRS of width 2L2 L is defined by

P=(L,μf(L)),Q=(L,2Lμf(L))R=(L,μf(L)),S=(L,μf(L)2L)\begin{array}{ll} P=(L, \mu f(L)), & Q=(L, 2 L-\mu f(L)) \\ R=(-L,-\mu f(L)), & S=(-L, \mu f(L)-2 L) \end{array}

where f(L)=13L3Lf(L)=\frac{1}{3} L^{3}-L. Show that if LL is sufficiently large then trajectories never leave the region inside the parallelogram.

Hence show that if F2<1F^{2}<1 there must be a periodic orbit. Explain your reasoning carefully.

(b) Use the energy-balance method to analyse the behaviour of the system for μ1\mu \ll 1, identifying the difference in behaviours between F2<1F^{2}<1 and F2>1F^{2}>1.

(c) Describe the behaviour of the system for μ1\mu \gg 1, using sketches of the phase plane to illustrate your arguments for the cases 0<F<10<F<1 and F>1F>1.

Typos? Please submit corrections to this page on GitHub.