Paper 1, Section II, 15B

Cosmology | Part II, 2021

(a) Consider the following action for the inflaton field ϕ\phi

S=d3x dta(t)3[12ϕ˙2c22a(t)2ϕϕV(ϕ)]S=\int \mathrm{d}^{3} x \mathrm{~d} t a(t)^{3}\left[\frac{1}{2} \dot{\phi}^{2}-\frac{c^{2}}{2 a(t)^{2}} \nabla \phi \cdot \nabla \phi-V(\phi)\right]

Use the principle of least action to derive the equation of motion for the inflaton ϕ\phi,

ϕ¨+3Hϕ˙c2a(t)22ϕ+dV(ϕ)dϕ=0\ddot{\phi}+3 H \dot{\phi}-\frac{c^{2}}{a(t)^{2}} \nabla^{2} \phi+\frac{\mathrm{d} V(\phi)}{\mathrm{d} \phi}=0

where H=a˙/aH=\dot{a} / a. [In the derivation you may discard boundary terms.]

(b) Consider a regime where V(ϕ)V(\phi) is approximately constant so that the universe undergoes a period of exponential expansion during which a=a0eHinf ta=a_{0} e^{H_{\text {inf }} t}. Show that ()(*) can be written in terms of the spatial Fourier transform ϕ^k(t)\widehat{\phi}_{\mathbf{k}}(t) of ϕ(x,t)\phi(\mathbf{x}, t) as

ϕ^¨k+3Hinfϕ^˙k+c2k2a2ϕ^k=0.\ddot{\widehat{\phi}}_{\mathbf{k}}+3 H_{\mathrm{inf}} \dot{\hat{\phi}}_{\mathbf{k}}+\frac{c^{2} k^{2}}{a^{2}} \widehat{\phi}_{\mathbf{k}}=0 .

(c) Define conformal time τ\tau and determine the range of τ\tau when a=a0eHinf ta=a_{0} e^{H_{\text {inf }} t}. Show that ()(* *) can be written in terms of the conformal time as

d2ϕ~kdτ2+(c2k22τ2)ϕ~k=0, where ϕ~k=1Hinfτϕ^k\frac{\mathrm{d}^{2} \tilde{\phi}_{\mathbf{k}}}{\mathrm{d} \tau^{2}}+\left(c^{2} k^{2}-\frac{2}{\tau^{2}}\right) \widetilde{\phi}_{\mathbf{k}}=0, \quad \text { where } \quad \tilde{\phi}_{\mathbf{k}}=-\frac{1}{H_{\mathrm{inf}} \tau} \widehat{\phi}_{\mathbf{k}}

(d) Let BD|\mathrm{BD}\rangle denote the state that in the far past was in the ground state of the standard harmonic oscillator with frequency ω=ck\omega=c k. Assuming that the quantum variance of ϕ^k\widehat{\phi}_{\mathbf{k}} is given by

PkBDϕ^kϕ^kBD=Hinf22c3k3(1+τ2c2k2)P_{\mathbf{k}} \equiv\left\langle\mathrm{BD}\left|\widehat{\phi}_{\mathbf{k}} \widehat{\phi}_{\mathbf{k}}^{\dagger}\right| \mathrm{BD}\right\rangle=\frac{\hbar H_{\mathrm{inf}}^{2}}{2 c^{3} k^{3}}\left(1+\tau^{2} c^{2} k^{2}\right)

explain in which sense inflation naturally generates a scale-invariant power spectrum. [You may use that PkP_{\mathbf{k}} has dimensions of [length ]3.]\left.]^{3} .\right]

Typos? Please submit corrections to this page on GitHub.