Paper 2, Section II, D

Classical Dynamics | Part II, 2021

(a) Show that the Hamiltonian

H=12p2+12ω2q2,H=\frac{1}{2} p^{2}+\frac{1}{2} \omega^{2} q^{2},

where ω\omega is a positive constant, describes a simple harmonic oscillator with angular frequency ω\omega. Show that the energy EE and the action II of the oscillator are related by E=ωIE=\omega I.

(b) Let 0<ϵ<20<\epsilon<2 be a constant. Verify that the differential equation

x¨+x(ϵt)2=0 subject to x(1)=0,x˙(1)=1\ddot{x}+\frac{x}{(\epsilon t)^{2}}=0 \quad \text { subject to } \quad x(1)=0, \quad \dot{x}(1)=1

is solved by

x(t)=tksin(klogt)x(t)=\frac{\sqrt{t}}{k} \sin (k \log t)

when t>1t>1, where kk is a constant you should determine in terms of ϵ\epsilon.

(c) Show that the solution in part (b) obeys

12x˙2+12x2(ϵt)2=1cos(2klogt)+2ksin(2klogt)+4k28k2t\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \frac{x^{2}}{(\epsilon t)^{2}}=\frac{1-\cos (2 k \log t)+2 k \sin (2 k \log t)+4 k^{2}}{8 k^{2} t}

Hence show that the fractional variation of the action in the limit ϵ1\epsilon \ll 1 is O(ϵ)O(\epsilon), but that these variations do not accumulate. Comment on this behaviour in relation to the theory of adiabatic invariance.

Typos? Please submit corrections to this page on GitHub.