Paper 2, Section II, D
(a) Show that the Hamiltonian
where is a positive constant, describes a simple harmonic oscillator with angular frequency . Show that the energy and the action of the oscillator are related by .
(b) Let be a constant. Verify that the differential equation
is solved by
when , where is a constant you should determine in terms of .
(c) Show that the solution in part (b) obeys
Hence show that the fractional variation of the action in the limit is , but that these variations do not accumulate. Comment on this behaviour in relation to the theory of adiabatic invariance.
Typos? Please submit corrections to this page on GitHub.