Paper 1, Section II, F

Automata and Formal Languages | Part II, 2021

For k1k \geqslant 1 give the definition of a partial recursive function f:NkNf: \mathbb{N}^{k} \rightarrow \mathbb{N} in terms of basic functions, composition, recursion and minimisation.

Show that the following partial functions from N\mathbb{N} to N\mathbb{N} are partial recursive: (i) s(n)={1n=00n1s(n)= \begin{cases}1 & n=0 \\ 0 & n \geqslant 1\end{cases} (ii) r(n)={1n odd 0n even , r(n)= \begin{cases}1 & n \text { odd } \\ 0 & n \text { even } \text {, }\end{cases} (iii) p(n)={ undefined if n is odd 0 if n is even p(n)=\left\{\begin{array}{l}\text { undefined if } n \text { is odd } \\ 0 \text { if } n \text { is even }\end{array}\right.

Which of these can be defined without using minimisation?

What is the class of functions f:NkNf: \mathbb{N}^{k} \rightarrow \mathbb{N} that can be defined using only basic functions and composition? [Hint: See which functions you can obtain and then show that these form a class that is closed with respect to the above.]

Show directly that every function in this class is computable.

Typos? Please submit corrections to this page on GitHub.