Paper 2, Section II, 32A
(a) Let and , for , be real-valued functions on .
(i) Define what it means for the sequence to be an asymptotic sequence as .
(ii) Define what it means for to have the asymptotic expansion
(b) Use the method of stationary phase to calculate the leading-order asymptotic approximation as of
[You may assume that .]
(c) Use Laplace's method to calculate the leading-order asymptotic approximation as of
[In parts (b) and (c) you should include brief qualitative reasons for the origin of the leading-order contributions, but you do not need to give a formal justification.]
Typos? Please submit corrections to this page on GitHub.