Paper 2, Section I, 2H2 H

Topics in Analysis | Part II, 2021

Let Ω\Omega be a non-empty bounded open set in R2\mathbb{R}^{2} with closure Ωˉ\bar{\Omega} and boundary Ω\partial \Omega and let ϕ:ΩˉR\phi: \bar{\Omega} \rightarrow \mathbb{R} be a continuous function. Give a proof or a counterexample for each of the following assertions.

(i) If ϕ\phi is twice differentiable on Ω\Omega with 2ϕ(x)>0\nabla^{2} \phi(\mathbf{x})>0 for all xΩ\mathbf{x} \in \Omega, then there exists an x0Ω\mathbf{x}_{0} \in \partial \Omega with ϕ(x0)ϕ(x)\phi\left(\mathbf{x}_{0}\right) \geqslant \phi(\mathbf{x}) for all xΩˉ\mathbf{x} \in \bar{\Omega}.

(ii) If ϕ\phi is twice differentiable on Ω\Omega with 2ϕ(x)<0\nabla^{2} \phi(\mathbf{x})<0 for all xΩ\mathbf{x} \in \Omega, then there exists an x0Ω\mathbf{x}_{0} \in \partial \Omega with ϕ(x0)ϕ(x)\phi\left(\mathbf{x}_{0}\right) \geqslant \phi(\mathbf{x}) for all xΩˉ\mathbf{x} \in \bar{\Omega}.

(iii) If ϕ\phi is four times differentiable on Ω\Omega with

4ϕx4(x)+4ϕy4(x)>0\frac{\partial^{4} \phi}{\partial x^{4}}(\mathbf{x})+\frac{\partial^{4} \phi}{\partial y^{4}}(\mathbf{x})>0

for all xΩ\mathbf{x} \in \Omega, then there exists an x0Ω\mathbf{x}_{0} \in \partial \Omega with ϕ(x0)ϕ(x)\phi\left(\mathbf{x}_{0}\right) \geqslant \phi(\mathbf{x}) for all xΩˉ\mathbf{x} \in \bar{\Omega}.

(iv) If ϕ\phi is twice differentiable on Ω\Omega with 2ϕ(x)=0\nabla^{2} \phi(\mathbf{x})=0 for all xΩ\mathbf{x} \in \Omega, then there exists an x0Ω\mathbf{x}_{0} \in \partial \Omega with ϕ(x0)ϕ(x)\phi\left(\mathbf{x}_{0}\right) \geqslant \phi(\mathbf{x}) for all xΩˉ\mathbf{x} \in \bar{\Omega}.

Typos? Please submit corrections to this page on GitHub.