Paper 4, Section II, B

Applications of Quantum Mechanics | Part II, 2021

(a) Consider the nearly free electron model in one dimension with mass mm and periodic potential V(x)=λU(x)V(x)=\lambda U(x) with 0<λ10<\lambda \ll 1 and

U(x)=l=Ulexp(2πialx)U(x)=\sum_{l=-\infty}^{\infty} U_{l} \exp \left(\frac{2 \pi i}{a} l x\right)

Ignoring degeneracies, the energy spectrum of Bloch states with wavenumber kk is

E(k)=E0(k)+λkUk+λ2kkkUkkUkE0(k)E0(k)+O(λ3)E(k)=E_{0}(k)+\lambda\langle k|U| k\rangle+\lambda^{2} \sum_{k^{\prime} \neq k} \frac{\left\langle k|U| k^{\prime}\right\rangle\left\langle k^{\prime}|U| k\right\rangle}{E_{0}(k)-E_{0}\left(k^{\prime}\right)}+\mathcal{O}\left(\lambda^{3}\right)

where {k}\{|k\rangle\} are normalized eigenstates of the free Hamiltonian with wavenumber kk. What is E0E_{0} in this formula?

If we impose periodic boundary conditions on the wavefunctions, ψ(x)=ψ(x+L)\psi(x)=\psi(x+L) with L=NaL=N a and NN a positive integer, what are the allowed values of kk and kk^{\prime} ? Determine kUk\left\langle k|U| k^{\prime}\right\rangle for these allowed values.

(b) State when the above expression for E(k)E(k) ceases to be a good approximation and explain why. Quoting any result you need from degenerate perturbation theory, calculate to O(λ)\mathcal{O}(\lambda) the location and width of the band gaps.

(c) Determine the allowed energy bands for each of the potentials

 (i) V(x)=2λcos(2πxa) (ii) V(x)=λan=δ(xna)\begin{aligned} &\text { (i) } V(x)=2 \lambda \cos \left(\frac{2 \pi x}{a}\right) \text {, } \\ &\text { (ii) } V(x)=\lambda a \sum_{n=-\infty}^{\infty} \delta(x-n a) \text {. } \end{aligned}

(d) Briefly discuss a macroscopic physical consequence of the existence of energy bands.

Typos? Please submit corrections to this page on GitHub.