Paper 3, Section II, 34B

Applications of Quantum Mechanics | Part II, 2021

(a) In three dimensions, define a Bravais lattice Λ\Lambda and its reciprocal lattice Λ\Lambda^{*}.

A particle is subject to a potential V(x)V(\mathbf{x}) with V(x)=V(x+r)V(\mathbf{x})=V(\mathbf{x}+\mathbf{r}) for xR3\mathbf{x} \in \mathbb{R}^{3} and rΛ\mathbf{r} \in \Lambda. State and prove Bloch's theorem and specify how the Brillouin zone is related to the reciprocal lattice.

(b) A body-centred cubic lattice ΛBCC\Lambda_{B C C} consists of the union of the points of a cubic lattice Λ1\Lambda_{1} and all the points Λ2\Lambda_{2} at the centre of each cube:

ΛBCCΛ1Λ2,Λ1{rR3:r=n1i^+n2j^+n3k^, with n1,2,3Z},Λ2{rR3:r=12(i^+j^+k^)+r, with rΛ1},\begin{aligned} \Lambda_{B C C} & \equiv \Lambda_{1} \cup \Lambda_{2}, \\ \Lambda_{1} & \equiv\left\{\mathbf{r} \in \mathbb{R}^{3}: \mathbf{r}=n_{1} \hat{\mathbf{i}}+n_{2} \hat{\mathbf{j}}+n_{3} \hat{\mathbf{k}}, \text { with } n_{1,2,3} \in \mathbb{Z}\right\}, \\ \Lambda_{2} & \equiv\left\{\mathbf{r} \in \mathbb{R}^{3}: \mathbf{r}=\frac{1}{2}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})+\mathbf{r}^{\prime}, \text { with } \mathbf{r}^{\prime} \in \Lambda_{1}\right\}, \end{aligned}

where i^,j^\hat{\mathbf{i}}, \hat{\mathbf{j}} and k^\hat{\mathbf{k}} are unit vectors parallel to the Cartesian coordinates in R3\mathbb{R}^{3}. Show that ΛBCC\Lambda_{B C C} is a Bravais lattice and determine the primitive vectors a1,a2\mathbf{a}_{1}, \mathbf{a}_{2} and a3\mathbf{a}_{3}.

Find the reciprocal lattice ΛBCC.\Lambda_{B C C}^{*} . Briefly explain what sort of lattice it is.

[\left[\right. Hint: The matrix M=12(111111111)M=\frac{1}{2}\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right) has inverse M1=(011101110)M^{-1}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right).

Typos? Please submit corrections to this page on GitHub.