Paper 2, Section II, H
Let be a measure space. A function is simple if it is of the form , where and .
Now let be a Borel-measurable map. Show that there exists a sequence of simple functions such that for all as .
Next suppose is also -integrable. Construct a sequence of simple -integrable functions such that as .
Finally, suppose is also bounded. Show that there exists a sequence of simple functions such that uniformly on as .
Typos? Please submit corrections to this page on GitHub.