Paper 4, Section II, 23H23 \mathrm{H}

Analysis of Functions | Part II, 2021

Fix 1<p<1<p<\infty and let qq satisfy p1+q1=1p^{-1}+q^{-1}=1

(a) Let (fj)\left(f_{j}\right) be a sequence of functions in Lp(Rn)L^{p}\left(\mathbb{R}^{n}\right). For fLp(Rn)f \in L^{p}\left(\mathbb{R}^{n}\right), what is meant by (i) fjff_{j} \rightarrow f in Lp(Rn)L^{p}\left(\mathbb{R}^{n}\right) and (ii) fjff_{j} \rightarrow f in Lp(Rn)L^{p}\left(\mathbb{R}^{n}\right) ? Show that if fjff_{j} \rightarrow f, then

fLplim infjfjLp\|f\|_{L^{p}} \leqslant \liminf _{j \rightarrow \infty}\left\|f_{j}\right\|_{L^{p}}

(b) Suppose that (gj)\left(g_{j}\right) is a sequence with gjLp(Rn)g_{j} \in L^{p}\left(\mathbb{R}^{n}\right), and that there exists K>0K>0 such that gjLpK\left\|g_{j}\right\|_{L^{p}} \leqslant K for all jj. Show that there exists gLp(Rn)g \in L^{p}\left(\mathbb{R}^{n}\right) and a subsequence (gjk)k=1\left(g_{j_{k}}\right)_{k=1}^{\infty}, such that for any sequence (hk)\left(h_{k}\right) with hkLq(Rn)h_{k} \in L^{q}\left(\mathbb{R}^{n}\right) and hkhLq(Rn)h_{k} \rightarrow h \in L^{q}\left(\mathbb{R}^{n}\right), we have

limkRngjkhkdx=Rnghdx.\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{j_{k}} h_{k} d x=\int_{\mathbb{R}^{n}} g h d x .

Give an example to show that the result need not hold if the condition hkhh_{k} \rightarrow h is replaced by hkhh_{k} \rightarrow h in Lq(Rn)L^{q}\left(\mathbb{R}^{n}\right).

Typos? Please submit corrections to this page on GitHub.