Paper 2, Section II, G

Number Fields | Part II, 2019

(a) Let LL be a number field. State Minkowski's upper bound for the norm of a representative for a given class of the ideal class group Cl(OL)\mathrm{Cl}\left(\mathcal{O}_{L}\right).

(b) Now let K=Q(47)K=\mathbb{Q}(\sqrt{-47}) and ω=12(1+47)\omega=\frac{1}{2}(1+\sqrt{-47}). Using Dedekind's criterion, or otherwise, factorise the ideals (ω)(\omega) and (2+ω)(2+\omega) as products of non-zero prime ideals of OK\mathcal{O}_{K}.

(c) Show that Cl(OK)\mathrm{Cl}\left(\mathcal{O}_{K}\right) is cyclic, and determine its order.

[You may assume that OK=Z[ω].]\left.\mathcal{O}_{K}=\mathbb{Z}[\omega] .\right]

Typos? Please submit corrections to this page on GitHub.