Paper 1, Section II, I
State the completeness theorem for propositional logic. Explain briefly how the proof of this theorem changes from the usual proof in the case when the set of primitive propositions may be uncountable.
State the compactness theorem and the decidability theorem, and deduce them from the completeness theorem.
A poset is called two-dimensional if there exist total orders and on such that if and only if and . By applying the compactness theorem for propositional logic, show that if every finite subset of a poset is two-dimensional then so is the poset itself.
[Hint: Take primitive propositions and , for each distinct , with the intended interpretation that is true if and only if and is true if and only if
Typos? Please submit corrections to this page on GitHub.