Paper 3, Section II, C

Integrable Systems | Part II, 2019

Suppose ψs:(x,u)(x~,u~)\psi^{s}:(x, u) \mapsto(\tilde{x}, \tilde{u}) is a smooth one-parameter group of transformations acting on R2\mathbb{R}^{2}, with infinitesimal generator

V=ξ(x,u)x+η(x,u)uV=\xi(x, u) \frac{\partial}{\partial x}+\eta(x, u) \frac{\partial}{\partial u}

(a) Define the nth n^{\text {th }}prolongation Pr(n)V\operatorname{Pr}^{(n)} V of VV, and show that

Pr(n)V=V+i=1nηiu(i)\operatorname{Pr}^{(n)} V=V+\sum_{i=1}^{n} \eta_{i} \frac{\partial}{\partial u^{(i)}}

where you should give an explicit formula to determine the ηi\eta_{i} recursively in terms of ξ\xi and η\eta.

(b) Find the nthn^{t h} prolongation of each of the following generators:

V1=x,V2=xx,V3=x2xV_{1}=\frac{\partial}{\partial x}, \quad V_{2}=x \frac{\partial}{\partial x}, \quad V_{3}=x^{2} \frac{\partial}{\partial x}

(c) Given a smooth, real-valued, function u=u(x)u=u(x), the Schwarzian derivative is defined by,

S=S[u]:=uxuxxx32uxx2ux2S=S[u]:=\frac{u_{x} u_{x x x}-\frac{3}{2} u_{x x}^{2}}{u_{x}^{2}}

Show that,

Pr(3)Vi(S)=ciS,\operatorname{Pr}^{(3)} V_{i}(S)=c_{i} S,

for i=1,2,3i=1,2,3 where cic_{i} are real functions which you should determine. What can you deduce about the symmetries of the equations: (i) S[u]=0S[u]=0, (ii) S[u]=1S[u]=1, (iii) S[u]=1x2S[u]=\frac{1}{x^{2}} ?

Typos? Please submit corrections to this page on GitHub.