Paper 4, Section II, G
State and prove Hall's theorem.
Let be an even positive integer. Let be the power set of . For , let . Let be the graph with vertex set where are adjacent if and only if . [Here, denotes the symmetric difference of and , given by
Let . Why is the induced subgraph bipartite? Show that it contains a matching from to .
A chain in is a subset such that whenever we have or . What is the least positive integer such that can be partitioned into pairwise disjoint chains? Justify your answer.
Typos? Please submit corrections to this page on GitHub.