Paper 1, Section I, A

Further Complex Methods | Part II, 2019

The Beta function is defined by

B(p,q):=01tp1(1t)q1dt=Γ(p)Γ(q)Γ(p+q)B(p, q):=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}

where Rep>0,Req>0\operatorname{Re} p>0, \operatorname{Re} q>0, and Γ\Gamma is the Gamma function.

(a) By using a suitable substitution and properties of Beta and Gamma functions, show that

01dx1x4=[Γ(1/4)]232π\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}=\frac{[\Gamma(1 / 4)]^{2}}{\sqrt{32 \pi}}

(b) Deduce that

K(1/2)=4[Γ(5/4)]2πK(1 / \sqrt{2})=\frac{4[\Gamma(5 / 4)]^{2}}{\sqrt{\pi}}

where K(k)K(k) is the complete elliptic integral, defined as

K(k):=01dt(1t2)(1k2t2)K(k):=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}

[Hint: You might find the change of variable x=t(2t2)1/2x=t\left(2-t^{2}\right)^{-1 / 2} helpful in part (b).]

Typos? Please submit corrections to this page on GitHub.