Paper 4, Section I, A

Further Complex Methods | Part II, 2019

A single-valued function Arcsin(z)\operatorname{Arcsin}(z) can be defined, for 0argz<2π0 \leqslant \arg z<2 \pi, by means of an integral as:

Arcsin(z)=0zdt(1t2)1/2\operatorname{Arcsin}(z)=\int_{0}^{z} \frac{d t}{\left(1-t^{2}\right)^{1 / 2}}

(a) Choose a suitable branch-cut with the integrand taking a value +1+1 at the origin on the upper side of the cut, i.e. at t=0+t=0^{+}, and describe suitable paths of integration in the two cases 0argzπ0 \leqslant \arg z \leqslant \pi and π<argz<2π\pi<\arg z<2 \pi.

(b) Construct the multivalued function arcsin(z)\arcsin (z) by analytic continuation.

(c) Express arcsin (e2πiz)\left(e^{2 \pi i} z\right) in terms of Arcsin(z)\operatorname{Arcsin}(z) and deduce the periodicity property of sin(z)\sin (z).

Typos? Please submit corrections to this page on GitHub.