Paper 1, Section II, H

Differential Geometry | Part II, 2019

Let n1n \geqslant 1 be an integer.

(a) Show that Sn={xRn+1:x12++xn+12=1}\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} defines a submanifold of Rn+1\mathbb{R}^{n+1} and identify explicitly its tangent space TxSnT_{x} \mathbb{S}^{n} for any xSnx \in \mathbb{S}^{n}.

(b) Show that the matrix group SO(n)Rn2S O(n) \subset \mathbb{R}^{n^{2}} defines a submanifold. Identify explicitly the tangent space TRSO(n)T_{R} S O(n) for any RSO(n)R \in S O(n).

(c) Given vSnv \in \mathbb{S}^{n}, show that the set Sv={RSO(n+1):Rv=v}S_{v}=\{R \in S O(n+1): R v=v\} defines a submanifold SvSO(n+1)S_{v} \subset S O(n+1) and compute its dimension. For vwv \neq w, is it ever the case that SvS_{v} and SwS_{w} are transversal?

[You may use standard theorems from the course concerning regular values and transversality.]

Typos? Please submit corrections to this page on GitHub.