Paper 2, Section II, F
(a) Let be a commutative algebra over a field , and a -linear homomorphism. Define , the derivations of centered in , and define the tangent space in terms of this.
Show directly from your definition that if is not a zero divisor and , then the natural map is an isomorphism.
(b) Suppose is an algebraically closed field and for . Let
Find a surjective map . Justify your answer.
Typos? Please submit corrections to this page on GitHub.