Mathematics Tripos Papers

  • Part IA
  • Part IB
  • Part II
  • FAQ

Paper 4, Section I, H

Topics in Analysis | Part II, 2019

Show that π\piπ is irrational. [Hint: consider the functions fn:[0,π]→Rf_{n}:[0, \pi] \rightarrow \mathbb{R}fn​:[0,π]→R given by fn(x)=xn(π−x)nsin⁡x.]\left.f_{n}(x)=x^{n}(\pi-x)^{n} \sin x .\right]fn​(x)=xn(π−x)nsinx.]

Typos? Please submit corrections to this page on GitHub.