Paper 3, Section I, J

Statistical Modelling | Part II, 2019

(a) For a given model with likelihood L(β),βRpL(\beta), \beta \in \mathbb{R}^{p}, define the Fisher information matrix in terms of the Hessian of the log-likelihood.

Consider a generalised linear model with design matrix XRn×pX \in \mathbb{R}^{n \times p}, output variables yRny \in \mathbb{R}^{n}, a bijective link function, mean parameters μ=(μ1,,μn)\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) and dispersion parameters σ12==σn2=σ2\sigma_{1}^{2}=\ldots=\sigma_{n}^{2}=\sigma^{2}. Assume σ2\sigma^{2} is known.

(b) State the form of the log-likelihood.

(c) For the canonical link, show that when the parameter σ2\sigma^{2} is known, the Fisher information matrix is equal to

σ2XTWX\sigma^{-2} X^{T} W X

for a diagonal matrix WW depending on the means μ\mu. Identify WW.

Typos? Please submit corrections to this page on GitHub.