Paper 3, Section II, 40C

Numerical Analysis | Part II, 2019

The diffusion equation

ut=uxx,0x1,t0,u_{t}=u_{x x}, \quad 0 \leqslant x \leqslant 1, \quad t \geqslant 0,

with the initial condition u(x,0)=ϕ(x),0x1u(x, 0)=\phi(x), 0 \leqslant x \leqslant 1, and boundary conditions u(0,t)=u(0, t)= u(1,t)=0u(1, t)=0, is discretised by umnu(mh,nk)u_{m}^{n} \approx u(m h, n k) with k=Δt,h=Δx=1/(1+M)k=\Delta t, h=\Delta x=1 /(1+M). The Courant number is given by μ=k/h2\mu=k / h^{2}.

(a) The system is solved numerically by the method

umn+1=umn+μ(um1n2umn+um+1n),m=1,2,,M,n0.u_{m}^{n+1}=u_{m}^{n}+\mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \quad m=1,2, \ldots, M, \quad n \geqslant 0 .

Prove directly that μ1/2\mu \leqslant 1 / 2 implies convergence.

(b) Now consider the method

aumn+114(μc)(um1n+12umn+1+um+1n+1)=aumn+14(μ+c)(um1n2umn+um+1n)a u_{m}^{n+1}-\frac{1}{4}(\mu-c)\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)=a u_{m}^{n}+\frac{1}{4}(\mu+c)\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right)

where aa and cc are real constants. Using an eigenvalue analysis and carefully justifying each step, determine conditions on μ,a\mu, a and cc for this method to be stable.

[You may use the notation [β,α,β][\beta, \alpha, \beta] for the tridiagonal matrix with α\alpha along the diagonal, and β\beta along the sub-and super-diagonals and use without proof any relevant theorems about such matrices.]

Typos? Please submit corrections to this page on GitHub.