Paper 1, Section II, H

Analysis of Functions | Part II, 2019

(a) Consider the topology T\mathcal{T} on the natural numbers NR\mathbb{N} \subset \mathbb{R} induced by the standard topology on R\mathbb{R}. Prove it is the discrete topology; i.e. T=P(N)\mathcal{T}=\mathcal{P}(\mathbb{N}) is the power set of N\mathbb{N}.

(b) Describe the corresponding Borel sets on N\mathbb{N} and prove that any function f:NRf: \mathbb{N} \rightarrow \mathbb{R} or f:N[0,+]f: \mathbb{N} \rightarrow[0,+\infty] is measurable.

(c) Using Lebesgue integration theory, define n1f(n)[0,+]\sum_{n \geqslant 1} f(n) \in[0,+\infty] for a function f:N[0,+]f: \mathbb{N} \rightarrow[0,+\infty] and then n1f(n)C\sum_{n \geqslant 1} f(n) \in \mathbb{C} for f:NCf: \mathbb{N} \rightarrow \mathbb{C}. State any condition needed for the sum of the latter series to be defined. What is a simple function in this setting, and which simple functions have finite sum?

(d) State and prove the Beppo Levi theorem (also known as the monotone convergence theorem).

(e) Consider f:R×N[0,+]f: \mathbb{R} \times \mathbb{N} \rightarrow[0,+\infty] such that for any nNn \in \mathbb{N}, the function tf(t,n)t \mapsto f(t, n) is non-decreasing. Prove that

limtn1f(t,n)=n1limtf(t,n).\lim _{t \rightarrow \infty} \sum_{n \geqslant 1} f(t, n)=\sum_{n \geqslant 1} \lim _{t \rightarrow \infty} f(t, n) .

Show that this need not be the case if we drop the hypothesis that tf(t,n)t \mapsto f(t, n) is nondecreasing, even if all the relevant limits exist.

Typos? Please submit corrections to this page on GitHub.