Paper 2, Section II, 20G

Number Fields | Part II, 2018

Let p1mod4p \equiv 1 \bmod 4 be a prime, and let ω=e2πi/p\omega=e^{2 \pi i / p}. Let L=Q(ω)L=\mathbb{Q}(\omega).

(a) Show that [L:Q]=p1[L: \mathbb{Q}]=p-1.

(b) Calculate disc(1,ω,ω2,,ωp2)\operatorname{disc}\left(1, \omega, \omega^{2}, \ldots, \omega^{p-2}\right). Deduce that pL\sqrt{p} \in L.

(c) Now suppose p=5p=5. Prove that OL×={±ωa(12+52)ba,bZ}\mathcal{O}_{L}^{\times}=\left\{\pm \omega^{a}\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)^{b} \mid a, b \in \mathbb{Z}\right\}. [You may use any general result without proof, provided that you state it precisely.]

Typos? Please submit corrections to this page on GitHub.