Paper 3, Section I, 6C\mathbf{6 C}

Mathematical Biology | Part II, 2018

Consider a nonlinear model for the axisymmetric dispersal of a population in two spatial dimensions whose density, n(r,t)n(r, t), obeys

nt=D(nn)\frac{\partial n}{\partial t}=D \boldsymbol{\nabla} \cdot(n \boldsymbol{\nabla} n)

where DD is a positive constant, rr is a radial polar coordinate, and tt is time.

Show that

2π0n(r,t)rdr=N2 \pi \int_{0}^{\infty} n(r, t) r d r=N

is constant. Interpret this condition.

Show that a similarity solution of the form

n(r,t)=(NDt)1/2f(r(NDt)1/4)n(r, t)=\left(\frac{N}{D t}\right)^{1 / 2} f\left(\frac{r}{(N D t)^{1 / 4}}\right)

is valid for t>0t>0 provided that the scaling function f(x)f(x) satisfies

ddx(xfdfdx+14x2f)=0.\frac{d}{d x}\left(x f \frac{d f}{d x}+\frac{1}{4} x^{2} f\right)=0 .

Show that there exists a value x0x_{0} (which need not be evaluated) such that f(x)>0f(x)>0 for x<x0x<x_{0} but f(x)=0f(x)=0 for x>x0x>x_{0}. Determine the area within which n(r,t)>0n(r, t)>0 at time tt in terms of x0x_{0}.

[Hint: The gradient and divergence operators in cylindrical polar coordinates act on radial functions ff and gg as

f(r)=frr^,[g(r)r^]=1rr(rg(r)).]\left.\boldsymbol{\nabla} f(r)=\frac{\partial f}{\partial r} \hat{\boldsymbol{r}} \quad, \quad \boldsymbol{\nabla} \cdot[g(r) \hat{\boldsymbol{r}}]=\frac{1}{r} \frac{\partial}{\partial r}(r g(r)) .\right]

Typos? Please submit corrections to this page on GitHub.