Paper 1, Section II, F
Let be a compact Hausdorff space.
(a) State the Arzelà-Ascoli theorem, and state both the real and complex versions of the Stone-Weierstraß theorem. Give an example of a compact space and a bounded set of functions in that is not relatively compact.
(b) Let be continuous. Show that there exists a sequence of polynomials in variables such that
Characterize the set of continuous functions for which there exists a sequence of polynomials such that uniformly on .
(c) Prove that if is equicontinuous then is finite. Does this implication remain true if we drop the requirement that be compact? Justify your answer.
Typos? Please submit corrections to this page on GitHub.