Paper 3, Section II, A

Integrable Systems | Part II, 2018

Suppose ψs:(x,u)(x~,u~)\psi^{s}:(x, u) \mapsto(\tilde{x}, \tilde{u}) is a smooth one-parameter group of transformations acting on R2\mathbb{R}^{2}.

(a) Define the generator of the transformation,

V=ξ(x,u)x+η(x,u)uV=\xi(x, u) \frac{\partial}{\partial x}+\eta(x, u) \frac{\partial}{\partial u}

where you should specify ξ\xi and η\eta in terms of ψs\psi^{s}.

(b) Define the nth n^{\text {th }}prolongation of V,Pr(n)VV, \operatorname{Pr}^{(n)} V and explicitly compute Pr(1)V\operatorname{Pr}^{(1)} V in terms of ξ,η\xi, \eta.

Recall that if ψs\psi^{s} is a Lie point symmetry of the ordinary differential equation:

Δ(x,u,dudx,,dnudxn)=0\Delta\left(x, u, \frac{d u}{d x}, \ldots, \frac{d^{n} u}{d x^{n}}\right)=0

then it follows that Pr(n)V[Δ]=0\operatorname{Pr}^{(n)} V[\Delta]=0 whenever Δ=0\Delta=0.

(c) Consider the ordinary differential equation:

dudx=F(x,u),\frac{d u}{d x}=F(x, u),

for FF a smooth function. Show that if VV generates a Lie point symmetry of this equation, then:

0=ηx+(ηuξxFξu)FξFxηFu0=\eta_{x}+\left(\eta_{u}-\xi_{x}-F \xi_{u}\right) F-\xi F_{x}-\eta F_{u}

(d) Find all the Lie point symmetries of the equation:

dudx=xG(ux2)\frac{d u}{d x}=x G\left(\frac{u}{x^{2}}\right)

where GG is an arbitrary smooth function.

Typos? Please submit corrections to this page on GitHub.