Paper 4, Section I, B
State the conditions for a point to be a regular singular point of a linear second-order homogeneous ordinary differential equation in the complex plane.
Find all singular points of the Bessel equation
and determine whether they are regular or irregular.
By writing , find two linearly independent solutions of . Comment on the relationship of your solutions to the nature of the singular points.
Typos? Please submit corrections to this page on GitHub.