Paper 1, Section I, B

Further Complex Methods | Part II, 2018

The Beta and Gamma functions are defined by

B(p,q)=01tp1(1t)q1dtΓ(p)=0ettp1dt\begin{aligned} B(p, q) &=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t \\ \Gamma(p) &=\int_{0}^{\infty} e^{-t} t^{p-1} d t \end{aligned}

where Rep>0,Req>0\operatorname{Re} p>0, \operatorname{Re} q>0.

(a) By using a suitable substitution, or otherwise, prove that

B(z,z)=212zB(z,12)B(z, z)=2^{1-2 z} B\left(z, \frac{1}{2}\right)

for Rez>0\operatorname{Re} z>0. Extending BB by analytic continuation, for which values of zCz \in \mathbb{C} does this result hold?

(b) Prove that

B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}

for Rep>0,Req>0\operatorname{Re} p>0, \operatorname{Re} q>0

Typos? Please submit corrections to this page on GitHub.