Paper 1, Section II, H
(a) Let be the vector space of 3-dimensional upper-triangular matrices with real entries:
Let be the set of elements of for which are integers. Notice that is a subgroup of ; let act on by left-multiplication and let . Show that the quotient is a covering map.
(b) Consider the unit circle , and let . Show that the map defined by
is a homeomorphism.
(c) Let , where is the smallest equivalence relation satisfying
for all . Prove that and are homeomorphic by exhibiting a homeomorphism . [You may assume without proof that is Hausdorff.]
(d) Prove that .
Typos? Please submit corrections to this page on GitHub.