Paper 1, Section I, B

Cosmology | Part II, 2018

For a homogeneous and isotropic universe filled with pressure-free matter (P=0)(P=0), the Friedmann and Raychaudhuri equations are, respectively,

(a˙a)2+kc2a2=8πG3ρ and a¨a=4πG3ρ,\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k c^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho \quad \text { and } \quad \frac{\ddot{a}}{a}=-\frac{4 \pi G}{3} \rho,

with mass density ρ\rho, curvature kk, and where a˙da/dt\dot{a} \equiv d a / d t. Using conformal time τ\tau with dτ=dt/ad \tau=d t / a, show that the relative density parameter can be expressed as

Ω(t)ρρcrit =8πGρa23H2\Omega(t) \equiv \frac{\rho}{\rho_{\text {crit }}}=\frac{8 \pi G \rho a^{2}}{3 \mathcal{H}^{2}}

where H=1adadτ\mathcal{H}=\frac{1}{a} \frac{d a}{d \tau} and ρcrit \rho_{\text {crit }} is the critical density of a flat k=0k=0 universe (Einstein-de Sitter). Use conformal time τ\tau again to show that the Friedmann and Raychaudhuri equations can be re-expressed as

kc2H2=Ω1 and 2dHdτ+H2+kc2=0\frac{k c^{2}}{\mathcal{H}^{2}}=\Omega-1 \quad \text { and } \quad 2 \frac{d \mathcal{H}}{d \tau}+\mathcal{H}^{2}+k c^{2}=0

From these derive the evolution equation for the density parameter Ω\Omega :

dΩdτ=HΩ(Ω1)\frac{d \Omega}{d \tau}=\mathcal{H} \Omega(\Omega-1)

Plot the qualitative behaviour of Ω\Omega as a function of time relative to the expanding Einsteinde Sitter model with Ω=1\Omega=1 (i.e., include curves initially with Ω>1\Omega>1 and Ω<1\Omega<1 ).

Typos? Please submit corrections to this page on GitHub.